Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов страница 22

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов

Скачать книгу

taking values in a general Banach space upper X with norm parallel-to dot parallel-to.

      Unlike the finite dimensional case, when we consider functions taking values in upper X, the relatively compactness of a set script í’œ subset-of upper G left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis does not come out as a consequence of the equiregulatedness of the set script í’œ and the boundedness of the set StartSet f left-parenthesis t right-parenthesis colon f element-of script í’œ EndSet subset-of upper X, for each t element-of left-bracket a comma b right-bracket. In the following lines, we present an example, borrowed from [177] which illustrates this fact.

parallel-to z Subscript n Baseline parallel-to less-than-or-slanted-equals upper K and parallel-to z Subscript n Baseline minus z Subscript m Baseline parallel-to greater-than-or-slanted-equals epsilon comma

      for all n not-equals m and for some constant upper K greater-than 0. Hence, the set

upper B equals left-brace y Subscript n Baseline colon left-bracket 0 comma 1 right-bracket right-arrow upper X colon y Subscript n Baseline left-parenthesis t right-parenthesis equals t z Subscript n Baseline comma n element-of double-struck upper N right-brace

      is bounded, once left-brace z Subscript n Baseline right-brace Subscript n element-of double-struck upper N is bounded. Moreover, upper B is equiregulated and left-brace y Subscript n Baseline left-parenthesis 0 right-parenthesis right-brace Subscript n element-of double-struck upper N is relatively compact in upper X. On the other hand, upper B is not relatively compact in upper G left-parenthesis left-bracket 0 comma 1 right-bracket comma upper X right-parenthesis.

      At this point, it is important to say that, in order to guarantee that a set script í’œ subset-of upper G left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis is relatively compact, one needs an additional condition. It is clear that, if one assumes that, for each t element-of left-bracket a comma b right-bracket, the set StartSet f left-parenthesis t right-parenthesis colon f element-of script í’œ EndSet is relatively compact in upper X, then script í’œ becomes relatively compact in upper G left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis. This is precisely what the next result says, and we refer to it as the Arzelà–Ascoli theorem for Banach space‐valued regulated functions. Such important result can be found in [97] and [177] as well.

      

      Theorem 1.18: Suppose is equiregulated and, for every , is relatively compact in . Then, is relatively compact in .

      Proof. Take a sequence of functions left-brace f Subscript n Baseline right-brace Subscript n element-of double-struck upper N Baseline subset-of script í’œ. The set script í’œ is equiregulated by hypothesis. Then, for every epsilon greater-than 0, there exists a division d equals left-parenthesis t Subscript i Baseline right-parenthesis element-of upper D Subscript left-bracket a comma b right-bracket fulfilling

parallel-to f Subscript n Baseline left-parenthesis t Superscript prime Baseline right-parenthesis minus f Subscript n Baseline left-parenthesis t right-parenthesis parallel-to less-than StartFraction epsilon Over 4 EndFraction comma

      for every n element-of double-struck upper N and t Subscript i minus 1 Baseline less-than t less-than t prime less-than t Subscript i, i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue.

      On the other hand, the sets left-brace f Subscript n Baseline left-parenthesis t Subscript i Baseline right-parenthesis right-brace Subscript n element-of double-struck upper N and left-brace f Subscript n Baseline left-parenthesis tau Subscript i Baseline right-parenthesis right-brace Subscript n element-of double-struck upper N are relatively compact in upper X for every i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue, where t Subscript i minus 1 Baseline less-than tau Subscript i Baseline less-than t Subscript i. Thus, there is a subsequence of indexes

Скачать книгу