Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов страница 43

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов

Скачать книгу

rel="nofollow" href="#fb3_img_img_f1c0d7a7-3191-5c5e-ac1c-72a4fe88a1f7.png" alt="gamma element-of upper K Subscript g Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper W comma upper Y right-parenthesis right-parenthesis"/>. Then, the statement follows from Theorem 1.68.

      The next result gives us an integration by parts formula for Perron–Stieltjes integrals. A proof of it can be found in [212, Theorem 13].

      Proposition 1.70: Suppose and or and . Then, the Perron–Stieltjes integrals and exist, and the following equality holds:

StartLayout 1st Row 1st Column integral Subscript a Superscript b Baseline d alpha left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis plus integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis equals 2nd Column alpha left-parenthesis b right-parenthesis f left-parenthesis b right-parenthesis minus alpha left-parenthesis a right-parenthesis f left-parenthesis a right-parenthesis 2nd Row 1st Column Blank 2nd Column minus sigma-summation Underscript a less-than-or-slanted-equals tau less-than b Endscripts normal upper Delta Superscript plus Baseline alpha left-parenthesis tau right-parenthesis normal upper Delta Superscript plus Baseline f left-parenthesis tau right-parenthesis plus sigma-summation Underscript a less-than-or-slanted-equals tau less-than b Endscripts normal upper Delta Superscript minus Baseline alpha left-parenthesis tau right-parenthesis normal upper Delta Superscript minus Baseline f left-parenthesis tau right-parenthesis comma EndLayout

       where , , , and

      As an immediate consequence of the previous proposition, we have the following result.

      Corollary 1.71: If and is a nondecreasing function, then the integral exists.

      We end this subsection by presenting a result, borrowed from [172] and [179, Theorem 5.4.5], which gives us a change of variable formula for Perron–Stieltjes integrals.

      

      Theorem 1.72: Suppose is increasing and maps onto and consider functions . Then, both integrals

integral Subscript alpha Superscript beta Baseline g left-parenthesis tau right-parenthesis d h left-parenthesis tau right-parenthesis comma integral Subscript a Superscript b Baseline g left-parenthesis phi left-parenthesis s right-parenthesis right-parenthesis d left-bracket h left-parenthesis phi left-parenthesis s right-parenthesis right-parenthesis right-bracket

       exists, whenever one of the integrals exists, in which case, we have

integral Subscript alpha Superscript beta Baseline g left-parenthesis tau right-parenthesis d h left-parenthesis tau right-parenthesis equals integral Subscript a Superscript b Baseline g left-parenthesis phi left-parenthesis s right-parenthesis right-parenthesis d left-bracket h left-parenthesis phi left-parenthesis s right-parenthesis right-parenthesis right-bracket period

      1.3.4 The Fundamental Theorem of Calculus

      The first result we present in this section is the Fundamental Theorem of Calculus for the variational Henstock integral. The proof follows standard steps (see [172], p. 43, for instance) adapted to Banach space-valued functions.

      Theorem 1.73 (Fundamental Theorem of Calculus): Suppose is a function such that there exists the derivative , for every . Then, and

integral Subscript a Superscript t Baseline f left-parenthesis s right-parenthesis d s equals upper F left-parenthesis t right-parenthesis minus upper F left-parenthesis a right-parenthesis comma t element-of left-bracket a comma b right-bracket period

      Example 1.74: Let upper X equals upper G Superscript minus Baseline left-parenthesis left-bracket 0 comma 1 right-bracket comma double-struck upper R right-parenthesis equals StartSet f element-of upper G left-parenthesis left-bracket 0 comma 1 right-bracket comma double-struck upper R right-parenthesis colon f is left hyphen continuous EndSet and consider the function f colon left-bracket 0 comma 1 right-bracket right-arrow upper X given by f left-parenthesis t right-parenthesis equals chi Subscript left-bracket t comma 1 right-bracket, where chi Subscript upper A denotes the characteristic function of a measurable set upper A subset-of left-bracket 0 comma 1 right-bracket.

      Since f element-of upper S upper V left-parenthesis left-bracket 0 comma 1 right-bracket comma upper L left-parenthesis double-struck upper R comma upper X right-parenthesis right-parenthesis (see Definition 1.24) and the function phi left-parenthesis t right-parenthesis equals t, t element-of left-bracket 0 comma 1 right-bracket, is an element of upper C left-parenthesis left-bracket 0 comma 1 right-bracket comma double-struck upper R right-parenthesis, the abstract Riemann–Stieltjes integral, integral Subscript 0 Superscript 1 Baseline d f left-parenthesis t right-parenthesis phi left-parenthesis t right-parenthesis, exists (see [127, Theorem 4.6], p. 24). Moreover, the Riemann–Stieltjes integral, integral Subscript 0 Superscript 1 Baseline f left-parenthesis t right-parenthesis d phi left-parenthesis t right-parenthesis, also exists and the integration by parts formula

integral Subscript 0 Superscript 1 Baseline f left-parenthesis t right-parenthesis d t equals integral Subscript 0 Superscript 1 Baseline f left-parenthesis t right-parenthesis d phi left-parenthesis t right-parenthesis equals left-parenthesis f left-parenthesis t right-parenthesis dot t right-parenthesis vertical-bar Subscript 0 Baseline Superscript 1 Baseline minus integral Subscript 0 Superscript 1 Baseline d f left-parenthesis 
						<noindex><p style= Скачать книгу