Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов страница 51

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов

Скачать книгу

the other hand, when the idea of McShane is employed in the variational Henstock integral, one gets precisely the Bochner–Lebesgue integral. This interesting fact was proved by W. Congxin and Y. Xiabo in [47] and, independently, by C. S. Hönig in [131]. Later, L. Di Piazza and K. Musal generalized this result (see [55]). We clarify here that unlike the proof by Congxin and Xiabo, based on the Fréchet differentiability of the Bochner–Lebesgue integral, Hönig's idea to prove the equivalence between the Bochner–Lebesgue integral and the integral we refer to as Henstock–McShane integral uses the fact that the indefinite integral of a Henstock–McShane integrable function is itself a function of bounded variation and the fact that absolute Henstock integrable functions are also functions of bounded variation. In this way, the proof provided in [131] becomes simpler. We reproduce it in the next lines, since reference [131] is not easily available. We also refer to [73] for some details.

      Definition 1.89: We say that a function f colon left-bracket a comma b right-bracket right-arrow upper X is Bochner–Lebesgue integrable (we write f element-of script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis), if there exists a sequence left-brace f Subscript n Baseline right-brace Subscript n element-of double-struck upper N of simple functions, f Subscript n Baseline colon left-bracket a comma b right-bracket right-arrow upper X, n element-of double-struck upper N, such that

      1  almost everywhere (i.e. for almost every ), and

      2 .

integral Subscript a Superscript b Baseline f left-parenthesis t right-parenthesis d t equals limit Underscript n right-arrow infinity Endscripts integral Subscript a Superscript b Baseline f Subscript n Baseline left-parenthesis t right-parenthesis d t and vertical-bar vertical-bar vertical-bar vertical-bar f Subscript 1 Baseline equals integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis t d t period

      Then, the space of all equivalence classes of Bochner–Lebesgue integrable functions, equipped with the norm vertical-bar vertical-bar vertical-bar vertical-bar f Subscript 1, is complete.

      The next definition can be found in [239], for instance.

      Definition 1.90: We say that a function f colon left-bracket a comma b right-bracket right-arrow upper X is measurable, whenever there is a sequence of simple functions f Subscript n Baseline colon left-bracket a comma b right-bracket right-arrow upper X such that f Subscript n Baseline right-arrow f almost everywhere. When this is the case,

      (1.A.1)f element-of script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis if and only if integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis t d t less-than infinity period

      Again, we explicit the “name” of the integral we are dealing with, whenever we believe there is room for ambiguity.

      As we mentioned earlier, when only real-valued functions are considered, the Lebesgue integral is equivalent to a modified version of the Kurzweil–Henstock (or Perron) integral called McShane integral. The idea of slightly modifying the definition of the Kurzweil–Henstock integral is due to E. J. McShane [173, 174]. Instead of taking tagged divisions of an interval left-bracket a comma b right-bracket, McShane considered what we call semitagged divisions, that is,

a equals t 0 less-than t 1 ellipsis less-than t Subscript StartAbsoluteValue d EndAbsoluteValue Baseline equals b

      is a division of left-bracket a comma b right-bracket and, to each subinterval left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket, with i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue, we associate a point xi Subscript i Baseline element-of left-bracket a comma b right-bracket called “tag” of the subinterval left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket. We denote such semitagged division by d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis and, by upper S upper T upper D Subscript left-bracket a comma b right-bracket, we mean the set of all semitagged divisions of the interval left-bracket a comma b right-bracket. But what is the difference between a semitagged division and a tagged division? Well, in a semitagged division left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper S upper T upper D Subscript left-bracket a comma b right-bracket, it is not required that a tag xi Subscript i belongs to its associated subinterval left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket. In fact, neither the subintervals need to contain their corresponding tags. Nevertheless, likewise for tagged divisions, given a gauge delta of left-bracket a comma b right-bracket, in order for a semitagged division left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper S upper T upper D Subscript left-bracket a comma b right-bracket to be delta-fine, we need to require that

left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket 
						<noindex><p style= Скачать книгу