Идеальная теория. Битва за общую теорию относительности. Педро Феррейра

Чтение книги онлайн.

Читать онлайн книгу Идеальная теория. Битва за общую теорию относительности - Педро Феррейра страница 9

Жанр:
Серия:
Издательство:
Идеальная теория. Битва за общую теорию относительности - Педро Феррейра New Science

Скачать книгу

в голову идей требуется язык другого типа. С одной стороны, он не хотел прибегать к заумной математике, способной затруднить понимание прекрасных физических концепций, которые он пытался собрать воедино, а с другой – через несколько недель после прибытия в Цюрих он умолял одного из своих старых друзей, математика Марселя Гроссмана: «Ты должен мне помочь, или я сойду с ума». На манеру физиков решать проблемы на скорую руку Гроссман смотрел скептически, но приложил все усилия, чтобы помочь другу.

      Эйнштейн наблюдал, как движутся объекты в случае ускорения и под действием силы тяжести. Маршрут их перемещений в пространстве отличался от простых прямых линий, описывавших движение в инерциальных системах. Усложненные форма и характер этого движения требовали от Эйнштейна выхода за пределы обычной геометрии. Гроссман дал ему учебник по неевклидовой, или римановой, геометрии.

      Почти за сто лет до того как Эйнштейн начал разрабатывать свой принцип относительности, в 20-х годах XIX века немецкий математик Карл Фридрих Гаусс предпринял дерзкую попытку вырваться за пределы геометрии Евклида. Евклид сформулировал правила для линий и форм на плоскости. Именно эту геометрию преподают в современных школах, и именно она утверждает, что параллельные линии никогда не пересекаются, а две прямые могут пересечься всего один раз. Мы усваиваем, что сумма углов треугольника составляет 180 градусов, а у прямоугольника четыре прямых угла. Мы изучаем и применяем целый свод правил. Мы чертим фигуры на плоских листах бумаги и досках, и эти правила служат нам верой и правдой.

      А как быть, если нас попросят взять искривленный лист бумаги? К примеру, если нужно нарисовать геометрические фигуры на поверхности гладкого баскетбольного мяча? Наши простые правила сразу перестают работать. Так, две линии, под прямым углом пересекающие экватор, должны быть параллельными. Они и в самом деле параллельны, но если двигаться вдоль этих линий, выясняется, что на одном из полюсов они пересекаются. То есть пересечение параллельных линий на сфере возможно. Можно пойти еще дальше и расположить эти линии таким образом, чтобы они пересекались друг с другом под прямым углом. В результате мы получим треугольник, сумма углов которого будет равна не 180, а 270 градусов. Правило, к которому мы привыкли, снова будет нарушено.

      Более того, любая поверхность сложной формы – сфера, тор, смятый лист бумаги – будет обладать собственной геометрией с собственными правилами. Гаусс выработал геометрию для поверхностей произвольного вида. Он придерживался демократических взглядов: все поверхности следовало считать тождественными и выработать для работы с ними общий набор правил. Геометрия Гаусса является крайне мощным и сложным инструментом. Дальнейшей ее разработкой в 1850 годах занялся другой немецкий математик, Бернхард Риман. Он создал столь изощренную и сложную область математики, что даже порекомендовавший Эйнштейну обратить внимание в эту сторону Гроссман счел, что Риман зашел слишком

Скачать книгу