Bir nefeste evren. Colin Stuart

Чтение книги онлайн.

Читать онлайн книгу Bir nefeste evren - Colin Stuart страница 6

Автор:
Жанр:
Серия:
Издательство:
Bir nefeste evren - Colin Stuart

Скачать книгу

isimdir). Güneş de bu odak noktalarının birinde bulunur.

      İkinci Yasa: Güneş ve bir gezegen arasındaki çizgi, eşit zamanda eşit alanları tarar.

      Gezegenlerin elips yörüngelerinin olmasının bir sonucu olarak bazı gezegenler, Güneş’e diğerlerinden daha yakındır. Ancak Kepler fark etti ki Güneş ve bir gezegen arasındaki çizgi, aynı toplam alanı, aynı sürede tarıyor (aşağıya bakınız). Basitleştirmek gerekirse aynı gezegen, Güneş’e yakın olduğunda hızlanıyor, uzak olduğunda ise yavaşlıyor.

      Kepler’e göre gezegenler, Güneş etrafında elips çizerek dönerler ve Güneş’e yakın olduklarında hızlanırlar.

      Üçüncü Yasa: Bir gezegenin yörüngesel devrinin karesi, gezegenin Güneş’e olan uzaklığının küpü ile doğru orantılıdır.

      Özü itibarıyla, bir gezegen Güneş’ten ne kadar uzaksa Güneş etrafındaki dönüşünü tamamlaması o kadar uzun sürer. Bu çok mantıklı, Güneş etrafındaki turunu en hızlı tamamlayan gezegen Merkür, çünkü izlediği yörünge diğerlerine kıyasla en küçüğü. Satürn’ün bu turu tamamlaması çok daha uzun sürüyor çünkü tamamlaması gereken yolculuk çok daha uzun. Kepler’in aydınlanışı, bu iki şey arasındaki kesin matematiksel ilişkiyi açıklamasıyla gerçekleşti. Brahe’nin doğru gözlemlerini kullanarak bir gezegenin yörüngesini tamamladığı sürenin karesi (süre x 2), gezegenin Güneş’e olan uzaklığının küpü (kendi uzaklığı x 3) ile doğru orantılıydı.

      Bu yasalar, doğrudan gözlemlere dayalı deneysel yasalardı; gezegenlerin neden Güneş’in etrafında döndüğüne dair teorik açıklamalar değildi. O ileri seviye anlayış, 1666 yılında bir salgın yüzünden Cambridge’i terketmek zorunda kalan ve annesinin bahçesinde otururken kafasına elma düşen bir İngiliz matematikçi ile gelecekti.

Isaac Newton ve yerçekimi

      Newton ve elma hikâyesinin içinde ufak bir gerçeklik payı var, ancak elma kafasına düşmedi. En azından güvenilen biyografi Memoirs of Sir Isaac Newton’s Life (1752) isimli kitaba göre böyle. Newton, kitabın yazarı William Stukeley’ye, yerçekimi teorisini, akşam yemeğinden sonra bahçede çay içtikleri sırada, bir elmanın yere düştüğünü gördükten sonra keşfettiğini söylemiş.

      Newton’ın temel kavrayışı, evrendeki her cismin bir diğerine karşı çekim kuvveti uygulamasıyla alakalıydı. Elma yeryüzüne doğru çekiliyordu, bu yüzden düştü. Düşmesi devam etmemişti, çünkü yere çarpmıştı. Newton fark etti ki eğer elmayı yeterli bir yüksekliğe ve hıza çıkarabilirsek yeryüzü araya girmeyeceği için Dünya’nın etrafında dolanarak düşmeye devam ederdi. Dünya’nın yörüngesinde dönerdi. Akıl yürütmedeki bu devrimsel sıçramayı Ay’ı düşünerek yaptı. Ay, Dünya’nın yörüngesinde elmanın düşme sebebiyle aynı sebepten dönüyordu, çünkü onun yolunu kesen hiçbir şey yoktu. Bunların hepsi iki cisim arasındaki çekim kuvvetinden kaynaklanıyordu.

      Yerçekimi hakkındaki düşüncelerini, 1687 yılında Doğa Felsefesinin Matematiksel İlkeleri (Philosophiæ Naturalis Principia Mathematica) adlı kitabında yayımladı. Bu kitap, hareketin yasaları da dahil olmak üzere, muazzam önemdeki diğer düşüncelerini de içeriyordu. Newton kitapta, iki cisim arasındaki çekim kuvvetinin, cisimlerin arasındaki mesafenin karesiyle ters oran-tılı olduğunu belirtti. Yani eğer iki cisim arasındaki mesafeyi iki katına çıkarırsanız çekim kuvveti çeyrek orana düşer. Mesafeyi üç katına çıkardığınızda bu kuvvet, dokuzda bire düşer. Düşüncelerini bu kadar güçlü yapan şey ise Kepler’in gezegen hareketleri yasasını açıklamak için, hem evrensel çekim kanununu hem de hareket yasalarını kullanmasıydı (bkz. 34. sayfa). Etkili bir şekilde “Gezegenlerin neden Güneş’in etrafında döndüğünü biliyorum ve bunu kanıtlayabilirim, çünkü fikirlerim Kepler’in buldukları ile aynı sonuçları verdi,” diyordu.

      Kepler’in ikinci yasasına bir bakalım. Bu yasa, bizlere Güneş ve bir gezegen arasındaki çizginin aynı sürede eşit alanları taradığını söylüyordu. Bir başka deyişle gezegenler Güneş’e yakınken hızlanıyor, uzaklaştığında ise yavaşlıyordu. İşte Newton, gezegenlerin bu davranışına bir açıklama getirdi. İki cisim arasındaki çekim, birbirlerine yaklaştıkça artıyor, uzaklaştıkça zayıflıyordu. Bir gezegen, Güneş’e yakın olduğunda daha kuvvetli bir çekim alanına giriyor ve gezegenin hızı artıyor; Güneş’ten uzaklaşırken ise bu çekimin gücü düşüyor ve dolayısıyla gezegen yavaşlamaya başlıyor.

      Bu arada Newton’ın başyapıtı neredeyse basılmayacaktı. The Royal Society2 tüm bütçesini Balıkların Tarihi adlı başarısız bir kitap için kullanmıştı. Daha sonra astronom Edmund Halley olaya dahil oldu ve baskı masraflarının hepsini karşıladı. Bunu yaparak tüm zamanların en önemli kitaplarından birinin (bilimsel olsun veya olmasın) günümüze ulaşmasını sağladı.

Isaac Newton ve ışık

      Düşen elmanın hayal gücünü canlandırdığı sıralarda Newton ayrıca, prizmalarla ve ışıkla ilgileniyordu. Bu cam bloklarla deney yapmak yeni bir şey değildi ve prizmaya giren beyaz ışığın birçok farklı renkte çıktığı da uzun süredir biliniyordu. Ancak geçerli görüş, ışığı renklendiren şeyin prizmaların ta kendisi olduğuydu. Işığın kendisi saf beyazdı.

      Newton, bu görüşün yanlışlığını basit ama zekice bir deneyle kanıtladı. 1666 yılında güneşli bir günde penceresinin tamamını, içeriye ışık giremeyecek şekilde kapladı ve kaplamaya yalnızca çok az güneş ışınının girebileceği küçücük bir delik açtı. Işığın geçtiği yola bir prizma koydu ve beklendiği gibi gökkuşağının renkleri ortaya çıktı. Deneyin zekice olan kısmına gelirsek: Bu renklerin yoluna ters çevrilmiş ikinci bir prizma yerleştirdi.

      Gerçekten de ikinci prizma, ayrı renklerin hepsini birleştirerek bunları tekrar beyaz bir ışığa çevirdi. Demek ki prizmalar beyaz ışığa renk falan eklemiyordu. Beyaz ışık, prizmaların ayırabildiği (veya birleştirebildiği) farklı renklerin karışımından oluşmalıydı. Newton, bulduğu sonuçları 1672’de yayımladı.

      Işığın özellikleri ile alakalı bu temel anlayış, modern astronominin birçok alanının bel kemiğini oluşturdu. İlerleyen bölümlerde göreceğimiz gibi, astronomlar bu bilgilere defalarca başvurdu.

AYNALI TELESKOP

      Newton 1668 yılında yeni bir teleskop türü tasarladı. Önceki teleskoplar mercekli (refraktör) teleskoplardı, bu teleskoplar ışığı mercekler aracılığıyla kırıyor veya büküyordu. Newton’ın aynalı (yansıtıcı) teleskopu, refraktör teleskoplarla ilgili en büyük sorunu çözüyordu: Renk sapması. Çünkü mercekler, ışığın her bir rengini tıpkı prizmaların yaptığı gibi biraz farklı bir şekilde büküyordu, yani hepsinin odak noktası farklıydı.

      Newton teleskopunda ise ışık tepeden giriyor ve dipteki içbükey aynaya vuruyor. Bu ışık boruya yansıtılıyor, düz olan ikinci bir aynaya çarpıyor ve odaklanılan görüntüyü yandaki göz merceğine yansıtıyor.

      Günümüzde devasa teleskopların hepsi aynalı, çünkü mercekli teleskopların büyüklüğünün bir sınırı var. Bu teleskoplarda ışık, merceğin içinden geçmek zorunda, yani merceği yanlardan sabitlemelisiniz.

Скачать книгу


<p>2</p>

The Royal Society, 1662’de kurulmuş bir bilim topluluğudur. Birleşik Krallık’ın Bilimler Akademisi olarak görevini yapmakta olup araştırma derneklerine ve bilimsel kuruluşlara yatırım yapmaktadır. (ç.n.)