Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных. Алексей Михнин
Чтение книги онлайн.
Читать онлайн книгу Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных - Алексей Михнин страница 5
Цели:
Разработать и обучить модели машинного обучения
Оценить качество моделей и выбрать наилучшую
Задачи:
Выбрать подходящие алгоритмы машинного обучения
Обучить модели и провести первичную оценку их качества
Документы:
Отчет о разработке и обучении моделей, содержащий описание используемых алгоритмов, параметров моделей и результатов оценки качества
Тюнинг гиперпараметров и оптимизация моделей:
Для повышения производительности модели проводят тюнинг гиперпараметров, используя различные методы поиска и оптимизации. Этот процесс включает настройку параметров модели для достижения лучших результатов.
Цели:
Повысить производительность моделей путем оптимизации их гиперпараметров
Задачи:
Применить различные методы поиска и оптимизации гиперпараметров
Сравнить результаты и выбрать оптимальные значения гиперпараметров
Документы:
Отчет о тюнинге гиперпараметров и оптимизации моделей, включающий результаты экспериментов и выбранные оптимальные значения гиперпараметров
Валидация и тестирование моделей:
На этом этапе команда проверяет модели на новых данных, чтобы оценить их обобщающую способность и производительность в реальных условиях.
Цели:
Проверить модели на новых данных для оценки их обобщающей способности и производительности в реальных условиях
Задачи:
Разделить данные на обучающую, валидационную и тестовую выборки
Провести тестирование моделей на тестовых данных и оценить их производительность
Документы:
Отчет о валидации и тестировании моделей, содержащий результаты тестирования и выводы о производительности моделей
Внедрение моделей в продакшн:
После успешного тестирования и валидации модели интегрируются в рабочую среду, где они будут использоваться для прогнозирования и автоматизации решений.
Цели:
Интегрировать модели в рабочую среду для их использования в решении реальных задач
Задачи:
Разработать и протестировать API или другой интерфейс для взаимодействия с моделями
Организовать инфраструктуру для развертывания и поддержки моделей
Документы:
Отчет о внедрении моделей в продакшн, описывающий процесс интеграции, используемые технологии и результаты тестирования интеграции
Мониторинг и обновление моделей:
На этом этапе команда следит за производительностью модели в продакшне, анализирует возникающие проблемы и периодически