Риски цифровизации: виды, характеристика, уголовно-правовая оценка. Коллектив авторов
Чтение книги онлайн.
Читать онлайн книгу Риски цифровизации: виды, характеристика, уголовно-правовая оценка - Коллектив авторов страница 13
Потребительская ценность системы относится к ключевым потребительским свойствам систем больших данных. Ценность системы – это ее пригодность для получения практически применимых выводов и принятия решений.
Наличие огромных объемов данных необходимо для анализа и, безусловно, существует прямая связь между данными (информации представленной в цифровом виде) и знаниями (достоверными представления о предметах и явлениях действительности), но из наличия взаимосвязи не следует означает, что в Big Data всегда есть знания и они могут быть извлечены. Если на их основании данных нельзя сделать полезных выводов, вся система не будет иметь ценности.
Технологии анализа позволяют автоматически находить в потоках данных зависимости, которые не в состоянии выявить человек, такие как, например, влияние атмосферного давления на покупку молочной продукции. Однако, если атмосферное давление за анализируемый период было приблизительно одно и тоже, собранные данные не будут содержать знания о существующей взаимосвязи и ценность системы будет нулевой.
Важной частью инициатив в области больших данных является понимание того, каковы затраты и выгоды от сбора и анализа данных. Необходим обоснованный прогноз, что в конечном счете получаемый результат анализа принесет конкретную пользу.
Качество данных и достоверность системы – свойства, которые показывают, что данные были получены из доверенных источников, в неискаженном виде, по доверенным каналам.
В случае, если анализ проводится на основе искаженных данных, выводы и решения не будут корректными. Например, сообщения в Twitter содержат хэш-теги, сокращения, опечатки, указание личных мнений и т. д. Таким образом данные не являются качественными т. к. искажение текста может привести к искажению заложенного в сообщения смысл. Впрочем, Twitter вызывает сомнения и как источник изначально достоверных данных. А если невысока исходная достоверность их сбор и анализ бесполезны.
Следующий пример относится к использованию данных систем глобальной навигации: часто GPS рассчитывает недостоверные координаты местоположения, особенно при размещении приемника в городских районах. Спутниковые сигналы теряются и искажаются, когда они отражаются от высоких зданий или других сооружений. Как единственный источник данных спутники сами по себе недостоверны. Для повышения качества данные о местоположении следует объединить со сведениями из других источников данных, например, с данными акселерометра или сигналами вышек сотовой связи.
Технологии систем Больших данных. Базовыми технологиями систем Big Data являются технологии сбора, анализа и представления данных.
Технологии сбора:
– смешение