Усиленное обучение. Джеймс Девис

Чтение книги онлайн.

Читать онлайн книгу Усиленное обучение - Джеймс Девис страница 4

Жанр:
Серия:
Издательство:
Усиленное обучение - Джеймс Девис

Скачать книгу

модели таким образом, чтобы она могла обобщать знания на новых, невидимых данных, а не просто запоминать тренировочные примеры. Метрики качества, такие как точность (accuracy), среднеквадратическая ошибка (MSE) и перекрестная энтропия (cross-entropy), используются для оценки производительности модели. Примеры применения супервизированного обучения включают классификацию изображений, распознавание речи и предсказание медицинских диагнозов.

      Неуправляемое обучение: выявление скрытых структур

      В неуправляемом обучении целью является нахождение скрытых закономерностей или структур в данных. Здесь нет размеченных меток, и модель должна самостоятельно выявлять паттерны и группы в данных. Алгоритмы неуправляемого обучения, такие как кластеризация (например, k-means) и методы понижения размерности (например, Principal Component Analysis, PCA), анализируют внутреннюю структуру данных.

      Например, в задаче кластеризации алгоритм может группировать похожие объекты вместе, позволяя обнаружить сегменты пользователей с похожими предпочтениями или поведенческими характеристиками. Методы понижения размерности, такие как PCA, помогают выявить основные компоненты данных, снижая их сложность и улучшая визуализацию. Неуправляемое обучение широко используется в сегментации клиентов, анализе текстов и обнаружении аномалий.

      Усиленное обучение: максимизация суммарного вознаграждения

      В усиленном обучении (Reinforcement Learning, RL) цель – максимизировать суммарное вознаграждение, что требует балансировки краткосрочных и долгосрочных выгод. Агент взаимодействует с динамической средой, принимая решения и получая обратную связь в виде наград или наказаний. В отличие от супервизированного и неуправляемого обучения, где задачи формулируются статично, RL динамически адаптируется к изменениям среды.

      Агент в RL учится через процесс проб и ошибок, постепенно совершенствуя свои стратегии на основе полученного опыта. Награды могут быть немедленными или отложенными, что добавляет сложности: агент должен учитывать, что некоторые действия могут привести к положительным результатам только в будущем. Это делает RL особенно подходящим для задач, требующих стратегического планирования и долгосрочного мышления, таких как игры, управление роботами и оптимизация производственных процессов.

      Балансировка краткосрочных и долгосрочных выгод

      Одним из ключевых вызовов в RL является необходимость балансировки между краткосрочными и долгосрочными выгодами. Агент должен находить компромисс между немедленным вознаграждением и стратегиями, которые могут привести к более значительным наградам в будущем. Например, в игре агент может решиться на рискованное действие, которое, хотя и несет временные потери, потенциально приведет к крупной победе в долгосрочной перспективе.

      Для решения этой задачи используются различные методы, такие как epsilon-стратегия в Q-Learning, которая позволяет агенту случайным образом выбирать действия для исследования

Скачать книгу