Кто за главного? Свобода воли с точки зрения нейробиологии. Майкл Газзанига

Чтение книги онлайн.

Читать онлайн книгу Кто за главного? Свобода воли с точки зрения нейробиологии - Майкл Газзанига страница 14

Кто за главного? Свобода воли с точки зрения нейробиологии - Майкл Газзанига Corpus scientificum

Скачать книгу

объема неокортекса регулируется сроками нейрогенеза (образования нервной ткани), которые, разумеется, находятся под контролем ДНК. Чем продолжительнее период развития, тем больше происходит клеточных делений, что приводит к образованию большего мозга. Самые наружные слои, супрагранулярные (слои II и III), созревают в последнюю очередь{43} и связываются преимущественно с другими участками коры{44}. Джефф Хатслер из нашей лаборатории сделал важное наблюдение: по сравнению с другими млекопитающими для приматов характерно более значительное пропорциональное увеличение нейронов из слоев II/III. Эти слои составляют 46 % толщины коры у приматов, 36 % – у плотоядных животных и 19 % – у грызунов{45}. Они толще, потому что в них находится плотная сеть контактов между кортикальными структурами. Многие исследователи считают, что эти слои и их связи играют важную роль в осуществлении высших когнитивных функций, связывая моторные, сенсорные и ассоциативные зоны коры. То, что у разных видов животных толщина этих слоев неодинакова, вероятно, подразумевает и неодинаковую степень связности{46}, которая может обусловливать когнитивные и поведенческие различия видов{47}. Увеличение размера неокортекса позволило бы перестроить локальные кортикальные сети и повысить число связей.

      Тогда как мозг приматов увеличился в размере, мозолистое тело – большой пучок нервных волокон, передающий информацию между двумя полушариями, – пропорционально уменьшилось{48}. Таким образом, увеличение объема мозга связано с ухудшением межполушарного взаимодействия. По мере того как наши предки приближались к человеку, полушария становились менее сцепленными. Между тем число взаимосвязей нейронов и количество локальных нейронных сетей внутри каждого полушария росли, так что процесс обработки информации обретал более локальный характер. Хотя многие сети дублируются и располагаются симметрично друг другу в обеих половинах мозга (например, сети правого мозга в основном контролируют движения левой стороны тела, а сети левого мозга – правую сторону тела), существует много таких сетей, которые есть лишь в одном из полушарий. Латерализованные (то есть присутствующие только в одном из двух полушарий) локальные сети очень распространены в человеческом мозге. В последние годы мы изучали нейроанатомические асимметрии у многих видов животных, но, похоже, у человека латерализованных сетей гораздо больше{49}.

      Какая-то основа для человеческой латерализации должна была уже присутствовать у нашего последнего общего с шимпанзе предка. Так, мои коллеги Чарльз Гамильтон и Бетти Вермеер изучали способность макаков распознавать лица и обнаружили правополушарное доминирование в считывании обезьяньих лиц{50}, точно как у людей – в считывании человеческих. Другие исследователи обратили внимание на то, что и у человека, и у шимпанзе гиппокампы (парные

Скачать книгу


<p>43</p>

Hutsler J. J. et al. (2005) Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species. Brain Research. 1052: 71-81.

<p>44</p>

См.: Caviness V. S. et al. (1995) Numbers, time and neocortical neurogenesis: a general developmental and evolutionary mo del. Trends in Neuroscience. 18 (9): 379-383; Fuster J. M. (2003) Neurobiology of cortical networks. In: Cortex and mind (P. 17-53). NY: Oxford University Press; а также Jones E. G. (1981) Anatomy of cerebral cortex: columnar input-output organization. In: Schmitt F. O. et al. (eds.) The organization of the cerebral cortex (P. 199-235). Cambridge, MA: The MIT Press.

<p>45</p>

Hutsler J. J., Galuske R. A. W. (2003) Hemispheric asymmetries in cerebral cortical networks. Trends in Neuroscience. 26: 429-435.

<p>46</p>

Elston G. N., Rosa M. G. P. (2000) Pyramidal cells, patches and cortical columns: a comparative study of infragranular neurons in TEO, TE, and the superior temporal polysensory area of the macaque monkey. The Journal of Neuroscience. 20 (24): RC117.

<p>47</p>

Elston G. N. (2003) Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cerebral Cortex. 13 (11): 1124-1138.

<p>48</p>

Rilling J. K., Insel T. R. (1999) Differential expansion of neural projection systems in primate brain evolution. Neuroreport. 10 (7): 1453-1459.

<p>49</p>

См.: Buxhoeveden D., Casanova M. (2000) Comparative lateralisation patterns in the language area of human, chimpanzee, and rhesus monkey brains. Laterality. 5 (4): 315-330; а также Gilissen E. (2001) Structural symmetries and asymmetries in human and chimpanzee brains. In: Falk D., Gibson K. R. (eds.) Evolutionary anatomy of the primate cerebral cortex (P. 187-215). Cambridge: Cambridge University Press.

<p>50</p>

Vermeire B., Hamilton C. R. (1998) Inversion effect for faces in split-brain monkeys. Neuropsychologia. 36 (10): 1003-1014.