Apocalypse 2012: An optimist investigates the end of civilization. Lawrence Joseph E.

Чтение книги онлайн.

Читать онлайн книгу Apocalypse 2012: An optimist investigates the end of civilization - Lawrence Joseph E. страница 7

Автор:
Жанр:
Серия:
Издательство:
Apocalypse 2012: An optimist investigates the end of civilization - Lawrence Joseph E.

Скачать книгу

… with it must have come most of the trappings of civilization—astronomy, mathematics, writing, urban planning,” writes Vincent H. Malmstrom of Dartmouth College.

      We all know intuitively that time occurs in both lines, as though arrows were being shot, and cycles. Time’s arrow refers to the simple fact that each minute follows the next in a straight line to infinity, or until Time ends altogether. Time’s cycle refers to eternal continuums, such as day and night, winter, spring, summer, and fall, the waxing and waning of the Moon. Time’s cycles and arrows can also be seen as reflecting different attitudes toward history: “those who ignore it are doomed to repeat it” (cycle) versus “yesterday’s news” (arrow). I’d always tended toward the latter camp, that history, though it made for good stories, was past. But after separating from my wife at roughly the same age, and with more or less the same height, weight, and features as my father did when he was separated from my mother, the “doomed to repeat it” scenario did ring a bell.

      Cultures tend to have predilections for either arrow or cycle. Contemporary postindustrial Western society certainly emphasizes the arrowlike onrush of time, passing faster and faster, blinking and beeping on watches, microwave ovens, cell phones, and turnstiles. An arrow-affinity speaks to a society’s orientation toward change and progress, though sometimes to the point of ignoring recurrent, eternal values. This imbalance may well have resulted from our shift away from an agriculturally based economy, which of course is finely attuned to seasonal cycles, and toward industrial and informational production, which are less dependent on such natural rhythms.

      The Maya were and are a cycle society. They see cycles in everything, and they love what they see. Progress is not nearly as important in their cosmic ethos as the serenity that comes from being in harmony with the eternal movements of Nature. The downside of course is that, being fixated on eternal cycles, the Maya might not notice the day-to-day changes occurring around them, a disregard that helps explain why, as many historians have noted, classic Mayan society degenerated and collapsed abruptly, without their ever having taken heed of the warning signs. Theories range from voluntary disengagement, meaning that the Mayans simply abandoned their cities and much of their lifestyle for (occult) reasons of their own, to internecine strife, to claims that the civilization never really fell so much as went underground.

      The current scholarly bet is that environmental degradation did them in. Indeed, Jared Diamond’s recent book, Collapse: How Societies Choose to Fail or Succeed, depicts the ancient Maya as the case study of what societies ought not to do to the local environment. Diamond methodically presses the argument that the Mayans over-farmed, deforested, and overpopulated their land. A 2004 NASA study confirms Diamond’s condemnation. Pollen trapped in sediments taken from the area right around Tikal, dating back approximately 1,200 years, just before the Mayan civilization’s collapse, indicates that trees had almost completely disappeared, replaced by weeds.

      Diamond believes that the population density of the Classic Mayan civilization reached 1,500 persons per square mile. That’s double the current density, for example, of Rwanda and Burundi, two of the most crowded and troubled nations in Africa. Warfare over scarce resources inevitably broke out, leading to a complete societal collapse—a peak population of between 5 million and 14 million in 800 CE tumbled 80 or 90 percent in less than a century.

      “We have to wonder why the kings and nobles failed to recognize and solve these seemingly obvious problems undermining their society. Their attention was evidently focused on their short-term concerns of enriching themselves, waging wars, erecting monuments, competing with each other, and extracting enough food from the peasants to support these activities. Like most leaders throughout human history, the Maya kings and nobles did not heed long-term problems, insofar as they perceived them,” writes Diamond.

      The Mayan fall in power, prosperity, and population is quite possibly the most drastic any civilization has ever experienced. Does this invalidate their wisdom? It certainly doesn’t recommend it, except possibly in the area of catastrophe, which historically they know better than just about anyone else.

      SPINNING LIKE A TOP

      Righteous indignation was still pumping my brain when it dawned on me that the exchange between those two computer nerds on top of the Tikal pyramid probably wasn’t far off in spirit from the conversations that took place there originally. That very pyramid, in fact, was built specifically for astronomers to chart the heavens and keep track of celestial time.

      Imagine two ancient Mayan astronomers, an elder and a younger, arguing about the stars on the eve of the vernal equinox. The elder observes that Polaris, the pole star of the Northern Hemisphere, is not in the same position it was on the vernal equinox thirty-six years ago, when he first started his observations. Over that time, Polaris has shifted in a westward direction, the elder declares, about the same distance as the width of the full Moon (roughly half a degree).

      The younger astronomer recoils from the heresy. From time immemorial, an article of celestial faith is that, on any given day and date, the stars are supposed to be in exactly the same position from one year to the next. To say otherwise would mean that the great heavenly clock is not keeping perfect time.

      Eventually the truth won out, and the elder’s discovery was incorporated into the Mayan cosmology. Perhaps as long as two and a half millennia ago, their ancient astronomers sussed out the astonishing fact that slowly, inexorably, the heavens crank westward at the rate of about 1 degree every 72 years, and complete a full circle every 26,000 Mayan solar years, a period equal to five Suns. A stargazer who lived for the next 26,000 Mayan solar years would see the polestar change from Polaris, also known as the North Star, to Vega, and then back to Polaris, as would a stargazer who lived from 26,000 Mayan solar years until now.

      As we’ve been reminded over and over again since Copernicus, it’s not the heavens but the Earth that moves. In fact the Earth spins like a top on its axis. Watch a top spin, and you will note that its axis slowly describes its own tiny circle. That process is called precession and is entirely analogous to what we perceive as the rotation of the heavens in the sky.

      Precession seems to have been discovered more or less simultaneously by a variety of different cultures. Traditionally, credit for first understanding that the heavens are in fact a giant clock that takes eons to move around goes to Hipparchus, an ancient Greek astronomer who lived in the second century BCE. However, it now seems likely that the ancient Egyptians, Babylonians, and Sumerians had earlier grasped the concept.

      Persian and Indian astronomers also knew of precession, perhaps via the ancient Greeks, and were so impressed with the fact that the heavens move ever so slowly in an incredibly huge circle that they attributed it all to a deity, Mithra. During the sixth century BCE, Mithraism spread rapidly throughout India, the Middle East, and Europe. At its peak in the second century CE, Mithraism was more widely embraced than Christianity throughout the Roman Empire. Its central doctrine sprang from the sacrifice of a sacred bull, from whose body all goodness sprang. Although Mithraism virtually vanished in the third century CE, with Islam eventually taking over in Persia later on, the Persian New Year is still celebrated on the vernal equinox, usually March 20, a festive holdover from Mithraic days.

      Long-term cycles in the Earth’s orbit and spin have more than cosmetic importance, according to Milutin Milankovitch, the brilliant Serbian astronomer. He examined three cycles, now known as the Milankovitch cycles, for their potential impacts on climate and catastrophe on Earth. The first cycle, known as eccentricity, simply accounts for the fact that the shape of the Earth’s orbit around the Sun changes from being almost perfectly circular to slightly more elliptical, over a cycle that lasts from 90,000 to 100,000 years. Right now we are at the most circular stage in that cycle, meaning that there’s only about a 3 percent variation in distance, and a 6 percent variation in received solar energy, between perihelion, the point where our planet is closest to the Sun, and aphelion, the point

Скачать книгу