Popular scientific lectures. Ernst Mach
Чтение книги онлайн.
Читать онлайн книгу Popular scientific lectures - Ernst Mach страница 6
A new puzzle-lock! But why invent one? Are not we human beings ourselves puzzle-locks? Think of the stupendous groups of thoughts, feelings, and emotions that can be aroused in us by a word! Are there not moments in all our lives when a mere name drives the blood to our hearts? Who that has attended a large mass-meeting has not experienced what tremendous quantities of energy and motion can be evolved by the innocent words, "Liberty, Equality, Fraternity."
But let us return to the subject proper of our discourse. Let us look again at our piano, or what will do just as well, at some other contrivance of the same character. What does this instrument do? Plainly, it decomposes, it analyses every agglomeration of sounds set up in the air into its individual component parts, each tone being taken up by a different string; it performs a real spectral analysis of sound. A person completely deaf, with the help of a piano, simply by touching the strings or examining their vibrations with a microscope, might investigate the sonorous motion of the air, and pick out the separate tones excited in it.
The ear has the same capacity as this piano. The ear performs for the mind what the piano performs for a person who is deaf. The mind without the ear is deaf. But a deaf person, with the piano, does hear after a fashion, though much less vividly, and more clumsily, than with the ear. The ear, thus, also decomposes sound into its component tonal parts. I shall now not be deceived, I think, if I assume that you already have a presentiment of what the function of Corti's fibres is. We can make the matter very plain to ourselves. We will use the one piano for exciting the sounds, and we shall imagine the second one in the ear of the observer in the place of Corti's fibres, which is a model of such an instrument. To every string of the piano in the ear we will suppose a special fibre of the auditory nerve attached, so that this fibre and this alone, is irritated when the string is thrown into vibration. If we strike now an accord on the external piano, for every tone of that accord a definite string of the internal piano will sound and as many different nervous fibres will be irritated as there are notes in the accord. The simultaneous sense-impressions due to different notes can thus be preserved unmingled and be separated by the attention. It is the same as with the five fingers of the hand. With each finger I can touch something different. Now the ear has three thousand such fingers, and each one is designed for the touching of a different tone.[9] Our ear is a puzzle-lock of the kind mentioned. It opens at the magic melody of a sound. But it is a stupendously ingenious lock. Not only one tone, but every tone makes it open; but each one differently. To each tone it replies with a different sensation.
More than once it has happened in the history of science that a phenomenon predicted by theory, has not been brought within the range of actual observation until long afterwards. Leverrier predicted the existence and the place of the planet Neptune, but it was not until sometime later that Galle actually found the planet at the predicted spot. Hamilton unfolded theoretically the phenomenon of the so-called conical refraction of light, but it was reserved for Lloyd some time subsequently to observe the fact. The fortunes of Helmholtz's theory of Corti's fibres have been somewhat similar. This theory, too, received its substantial confirmation from the subsequent observations of V. Hensen. On the free surface of the bodies of Crustacea, connected with the auditory nerves, rows of little hairy filaments of varying lengths and thicknesses are found, which to some extent are the analogues of Corti's fibres. Hensen saw these hairs vibrate when sounds were excited, and when different notes were struck different hairs were set in vibration.
I have compared the work of the physical inquirer to the journey of the tourist. When the tourist ascends a new hill he obtains of the whole district a different view. When the inquirer has found the solution of one enigma, the solution of a host of others falls into his hands.
Surely you have often felt the strange impression experienced when in singing through the scale the octave is reached, and nearly the same sensation is produced as by the fundamental tone. The phenomenon finds its explanation in the view here laid down of the ear. And not only this phenomenon but all the laws of the theory of harmony may be grasped and verified from this point of view with a clearness before undreamt of. Unfortunately, I must content myself to-day with the simple indication of these beautiful prospects. Their consideration would lead us too far aside into the fields of other sciences.
The searcher of nature, too, must restrain himself in his path. He also is drawn along from one beauty to another as the tourist from dale to dale, and as circumstances generally draw men from one condition of life into others. It is not he so much that makes the quests, as that the quests are made of him. Yet let him profit by his time, and let not his glance rove aimlessly hither and thither. For soon the evening sun will shine, and ere he has caught a full glimpse of the wonders close by, a mighty hand will seize him and lead him away into a different world of puzzles.
Respected hearers, science once stood in an entirely different relation to poetry. The old Hindu mathematicians wrote their theorems in verses, and lotus-flowers, roses, and lilies, beautiful sceneries, lakes, and mountains figured in their problems.
"Thou goest forth on this lake in a boat. A lily juts forth, one palm above the water. A breeze bends it downwards, and it vanishes two palms from its previous spot beneath the surface. Quick, mathematician, tell me how deep is the lake!"
Thus spoke an ancient Hindu scholar. This poetry, and rightly, has disappeared from science, but from its dry leaves another poetry is wafted aloft which cannot be described to him who has never felt it. Whoever will fully enjoy this poetry must put his hand to the plough, must himself investigate. Therefore, enough of this! I shall reckon myself fortunate if you do not repent of this brief excursion into the flowered dale of physiology, and if you take with yourselves the belief that we can say of science what we say of poetry,
"Who the song would understand,
Needs must seek the song's own land;
Who the minstrel understand
Needs must seek the minstrel's land."
ON THE CAUSES OF HARMONY.
We are to speak to-day of a theme which is perhaps of somewhat more general interest—the causes of the harmony of musical sounds. The first and simplest experiences relative to harmony are very ancient. Not so the explanation of its laws. These were first supplied by the investigators of a recent epoch. Allow me an historical retrospect.
Pythagoras (586 BC) knew that the note yielded by a string of steady tension was converted into its octave when the length of the string was reduced one-half, and into its fifth when reduced two-thirds; and that then the first fundamental tone was consonant with the two others. He knew generally that the same string under fixed tension gives consonant tones when successively divided into lengths that are in the proportions of the simplest natural numbers; that is, in the proportions of 1:2, 2:3, 3:4, 4:5.
Pythagoras failed to reveal the causes of these laws. What have consonant tones to do with the simple natural numbers? That is the question we should ask to-day. But this circumstance must have appeared less strange than inexplicable to Pythagoras. This philosopher sought for the causes of harmony in the occult, miraculous powers of numbers. His procedure was largely the cause of the upgrowth of a numerical mysticism, of which the traces may still be detected in our oneirocritical books and among some scientists, to whom marvels are more attractive than lucidity.
Euclid (300 BC) gives a definition of consonance and dissonance that could hardly be improved upon,