Quantum Mechanics for Nuclear Structure, Volume 2. Professor Kris Heyde

Чтение книги онлайн.

Читать онлайн книгу Quantum Mechanics for Nuclear Structure, Volume 2 - Professor Kris Heyde страница 13

Автор:
Жанр:
Серия:
Издательство:
Quantum Mechanics for Nuclear Structure, Volume 2 - Professor Kris Heyde

Скачать книгу

      Whence, consider

      K≔∫∫dz∣z〉II〈z∣=∫∫dze−∣z∣2∑n(z*)nn!∣n〉∑mzmm!〈m∣;(1.272)

      which, for z=reiϕ, gives

      K=∫0∞rdr∫02πdϕe−r2∑n,mei(m−n)ϕrn+mn!m!∣n〉〈m∣.(1.273)

      Now,

      ∫02πdϕei(m−n)ϕ=2πδmn,(1.274)

      ∴K=∑n∫0∞drr2n+1e−r22πn!∣n〉〈n∣=∑nΓ(n+1)22πn!∣n〉〈n∣=π∑n∣n〉〈n∣=πI.(1.275)

      Thus, the resolution of the identity on Bargmann space is:

      I=∫∫dzπ∣z〉II〈z∣≔∫∫dze−∣z∣2π∣z〉IIII〈z∣,(1.276)

      where ∣z〉II↔χn(z), cf. equation (1.270). Then,

      〈Ψ1∣Ψ2〉=∫∫dze−∣z∣2π〈Ψ1∣z〉IIII〈z∣Ψ2〉=∫∫dze−∣z∣2πΨ1*(z)Ψ2(z)=∫∫dμ(z)Ψ1*(z)Ψ2(z),(1.277)

      where

      Ψ(z)≔II〈z∣Ψ〉,(1.278)

      dμ(z)≔e−∣z∣2πdz.(1.279)

      Bargmann representations of functions are transformed into position representations of functions by the Bargmann transformation,

      where

      A(x,z*)≔1π14exp−12x2+2xz*−12(z*)2(1.281)

      is the Bargmann kernel function.

      Comments:

      1 The orthogonality of the χn(z) is evident in a polar coordinate representation which gives (z*)nzm→ei(m−n)ϕ and ∫02πdϕei(m−n)ϕ=2πδmn.

      2 The normalizability of the χn(z) is evident from the Gaussian form of Bargmann measure which ‘quenches’ the scalar products for large ∣z∣. (Indeed, the scalar products involve ‘camouflaged’ Hermite polynomials.)

      3 The functions χn(z) are trivially generalised to tensor product functions,χn1(z1)⊗χn2(z2)⊗⋯which yields functions∑n1,n2,…αn1,n2,…z1n1n!!z2n2n2!⋯(cf. equations (1.147) and (1.176)).

      Consider the operator O and its representation, O↔Γ(O) in terms of z and ∂∂z, O(z,∂∂z) acting on z-space wave functions, Ψ(z). This is similar to the procedure presented in Volume 1, chapter 8, where, e.g. the operator px (momentum in the x direction) was shown to have a ‘position’ representation px↔−iℏ∂∂x when acting on Cartesian-space wave functions Ψ(x,y,z). The key there is to define a position eigenket basis {∣x〉} and arrive at statements such as 〈x∣pˆx∣Ψ〉=−iℏ∂∂x〈x∣Ψ〉=−iℏ∂Ψ(x)∂x. Thus, we proceed with the ∣z〉II basis, (∣z〉II≔ez*a†∣0〉, cf. Volume 1, section 5.5, equation (5.118))

      O∣Ψ〉⇒ΓOz,∂∂zΨ(z)=II〈z∣O∣Ψ〉=〈0∣ezaO∣Ψ〉=〈0∣(ezaOe−za)eza∣Ψ〉=〈0∣O+[za,O]+12[za,[za,O]]+⋯eza∣Ψ〉,(1.282)

      where the Baker–Campbell–Hausdorff lemma is used (cf. Volume 1, chapter 5, equation (5.110)). Essentially all operators of relevance can be expressed in terms of a and a†, whence: for O=a

      and from ∂∂z(eza)=aeza

      ⇒Γ(a)=∂∂z.(1.284)

      For O=a†

image

      Note:

       1.∂∂z,z=1,cf.[a,a†]=1.(1.286)

       2. z and ∂∂z are Hermitian adjoints for scalar products defined on Bargmann measure:e.g.forΨa=∑nanzn,Ψb=∑nbnzn,(1.287)∫∫dze−∣z∣2πΨa*∂∂zΨb=∑nan*bn+1(n+1)!=∫∫dze−∣z∣2πΨb(zΨa)*.(1.288)

      The generalisation of the coherent state concept from the one-dimensional harmonic oscillator (Volume 1, section 5.5) to angular momentum is effected through their respective algebras: the Heisenberg–Weyl algebra in one dimension, hw(1) and su(2).

hw(1) su(2)
Generators a† J+
a J−
I J 0
Commutator relations [a,a†]=I [J−,J+]=−2J0
[I,a†]=0 [J0,J+]=+J+
[I,a]=0 [J0,J−]=−J−
Lowest-weight state ∣0〉 ∣j,−j〉≔∣−j〉
a∣0〉=0 J−∣−j〉=0

      Generalising the type-I coherent state from HW(1) to SU(2)

      ∣ζI〉≔expζ*J+−ζJ−∣−j〉,(1.289)

      for ζ≔12θeiϕ,

      eζ*J+−ζJ−=e−iθ(Jxsinϕ−Jycosϕ)=e−iθ(J⃗·nˆ),(1.290)

      where nˆ is a unit vector in the x,y plane making an angle ϕ with the negative y-axis. This is illustrated in figure 1.5. All physically significant rotations are accommodated by this formalism (the apparent exclusion of rotations about the z-axis only excludes changes in phase, which could be introduced using e−iχJ0).

Скачать книгу