Quantum Mechanics for Nuclear Structure, Volume 2. Professor Kris Heyde
Чтение книги онлайн.
Читать онлайн книгу Quantum Mechanics for Nuclear Structure, Volume 2 - Professor Kris Heyde страница 5
Figure 1.1 depicts the following:
R(α,β,γ)=Rz(γ)RY(β)Rz¯(α).(1.1)
Note the order of the three rotations. The problem is that these three rotations are about axes belonging to three different frames of reference. The three rotations on the right-hand side of equation (1.1) can be restated in terms of a single frame of reference using similarity transformations, specifically
Rz(γ)=RY(β)Rz¯(γ)RY−1(β)(1.2)
and
RY(β)=Rz¯(α)Ry¯(β)Rz¯−1(α).(1.3)
Thus,
∴R(α,β,γ)=RY(β)Rz¯(γ)Rz¯(α);(1.5)
and, since Rz¯(γ) and Rz¯(α) commute,
∴R(α,β,γ)=RY(β)Rz¯(α)Rz¯(γ),(1.6)
∴R(α,β,γ)=Rz¯(α)Ry¯(β)Rz¯(γ).(1.8)
Note the new order of the three rotations (cf. equation (1.1)).
1.2 Matrix representations of spin and angular momentum operators
The matrix elements of Jˆz,Jˆ± in the {∣jm〉;j=0,12,1,32,…;m=+j,+j−1,…,−j} basis are (cf. Volume 1, chapter 11):
〈j′m′∣Jˆz∣jm〉=mℏδj′jδm′m,(1.9)
〈j′m′∣Jˆ±∣jm〉=(j∓m)(j±m+1)ℏδj′jδm′m±1.(1.10)
Matrix elements of Jˆx and Jˆy follow from:
Jˆx=12(Jˆ++Jˆ−),(1.11)
Jˆy=12i(Jˆ+−Jˆ−),(1.12)
where, recall Jˆ±≔Jˆx±iJˆy. Thus, the matrix representations of Jˆx,Jˆy, and Jˆz in a ∣jm〉 basis are:
Jˆx↔ℏ200000011000002020202000000300302002030030⋱,(1.13)
Jˆy↔ℏ2i0000001−10000020−2020−2000000300−30200−20300−30⋱,(1.14)
Jˆz↔ℏ200000100−100020000000−200003000010000−10000−3⋱.(1.15)
Note the ‘block-diagonal’ form of Jˆx and Jˆy. These blocks correspond to j=0,12,1,32,…. The matrix representation of Jˆz is diagonal with eigenvalues 0;12ℏ,−12ℏ;ℏ,0,−ℏ;32ℏ,12ℏ, −12ℏ,−32ℏ;…. It is normal practice to reduce these (infinite) matrices by breaking apart the blocks to give finite dimensional matrices. Thus, e.g.
j=12:Jˆx12↔ℏ20110,Jˆy12↔ℏ20−ii0,Jˆz12↔ℏ2100−1;(1.16)
j = 1:Jˆx(1)↔ℏ2020202020,Jˆy(1)↔ℏ20−2i02i0−2i02i0,Jˆz(1)↔ℏ220000000−2.(1.17)
The terminology:
Jˆx12≔Sˆx,Jˆy12≔Sˆy,Jˆz12≔Sˆz,(1.18)
σx≔0110,σy≔0−ii0,σz≔100−1,(1.19)
(cf. equation (1.16)), where σx,σy,σz are the Pauli spin matrices, is in common use.
1.3 The Pauli spin matrices
The Pauli spin matrices, σx,σy,σz, possess a number of useful properties. We redefine them by σj,σk,σl,(j,k,l)=(x,y,z). Then
σj2=σk2=σl2=Iˆ,(1.20)
σjσk+σkσj=0,forj≠k,(1.21)
i.e.
{σj,σk}=2δjkIˆ,(1.22)
where ‘{, }’ is an anticommutator bracket (also written ‘ [,]+’). Further,
[σj,σk]=2iεjklσl,(1.23)
where
εjkl≡εklj≡εljk≡1;εkjl≡εjlk≡εlkj≡−1.(1.24)
From equations (1.22) and (1.23)
σjσk=−σkσj=iσl.(1.25)
Also,
σj†=σj,(1.26)
det(σj)=−1,(1.27)
tr(σj)=0.(1.28)
For the three-dimensional Cartesian vector a⃗, σ⃗·a⃗ is a 2 × 2 matrix2:
σ⃗·a⃗≔σxax+σyay+σzaz,(1.29)
∴σ⃗·a⃗=azax−iayax+iay−az.(1.30)
This leads to the important identity:
(σ⃗·a⃗)(σ⃗·b⃗)=a⃗·b⃗Iˆ+iσ⃗·(a⃗×b⃗).(1.31)
This can be obtained from equations (1.22) and (1.23):
(σ⃗·a⃗)(σ⃗·b⃗)=∑jσjaj∑kσkbk.(1.32)
∴(σ⃗·a⃗)(σ⃗·b⃗)=∑j∑k12{σj,σk}+12[σj,σk]ajbk,(1.33)
∴(σ⃗·a⃗)(σ⃗·b⃗)=∑j∑k(δjk+iεjklσl)ajbk,(1.34)
∴(σ⃗·a⃗)(σ⃗·b⃗)=a⃗·b⃗Iˆ+iσ⃗·(a⃗×b⃗).(1.35)
If the components of a⃗ are real then
(σ⃗·a⃗)2=∣a⃗∣2Iˆ,(1.36)
where ∣a⃗∣ is the magnitude of the vector a⃗.
1.4 Matrix representations of rotations in ket space
We are