The Romance of Industry and Invention - The Original Classic Edition. Cochrane Robert

Чтение книги онлайн.

Читать онлайн книгу The Romance of Industry and Invention - The Original Classic Edition - Cochrane Robert страница 7

The Romance of Industry and Invention - The Original Classic Edition - Cochrane Robert

Скачать книгу

To the bath of molten metal thus obtained spiegeleisen or ferro-manganese is added to supply the required carbon and to otherwise act as

       in the Bessemer converter. The result[Pg 36] is tested by small ladle samples, and when it is of the desired quality a portion is run off,

       leaving sufficient bath for the continuation of the process.

       Siemens took out his patent for the 'open hearth' process of steel-making (the Forth Bridge is built of steel made in this way) in

       1861, and four years later erected sample steel works at Birmingham. The engineer of the London and North-Western Railway adopted his system at Crewe in 1868, and the Great Western Railway works followed. In 1869 this process was being carried out on a large scale at the works of the Landore-Siemens Steel Company and elsewhere in England, as well as at various works on the Continent, including Krupp's, at Essen.

       In 1862, Siemens was elected a Fellow of the Royal Society, and in 1874 was presented with the Royal Albert Medal, and in 1875 with the Bessemer Medal in recognition of his researches and inventions in heat and metallurgy. He filled the president's chair in the three principal engineering and telegraphic societies of Great Britain, and in 1882 was President of the British Association. As

       manager in England of the firm of Siemens Brothers, Sir William Siemens was actively engaged in the construction of overland and submarine telegraphs. The steamship Faraday was specially designed by him for cable-laying. In addition to his labours in connection with electric-lighting, Sir William Siemens also successfully applied, in the construction of the Portrush Electric Tramway, which was opened in 1883, electricity to the production of locomotion. In his regenerative furnace, as we have seen, he utilised in an ingenious way the heat which would otherwise have escaped with the products of combustion. The process was subsequently applied in many industrial processes, but notably by Siemens himself in the manufacture of steel.[Pg 37]

       The other inventions and researches of this wonderful man include a water-meter; a thermometer or pyrometer, which measures by the change produced in the electric conductivity of metals; the bathometer, for measuring ocean depths by variations in the attraction exerted on a delicately suspended body; and the hastening of vegetable growth by use of the electric light. He was knighted in April 1883, and died on November 19 of the same year. There is a memorial window to his memory in Westminster Abbey.

       As the elder brother of Sir William Siemens was so closely connected with him in business life, and may be said to have encouraged and led him into the walk of life in which he excelled, he also deserves a notice here. Werner Von Siemens, engineer and electrician, was born December 13, 1816, at Lenthe in Hanover. In 1834 he entered the Prussian Artillery; and in 1844 was put in charge of

       the artillery workshops at Berlin. He early showed scientific tastes, and in 1841 took out his first patent for galvanic silver and gold plating. By selling the right of using his process he made 40 louis d'or, which supplied him with the means for further experiments. During the Schleswig-Holstein war, he attracted considerable attention by using electricity for the firing of the mines which had been laid for the defence of Kiel harbour. He was of peculiar service in developing the telegraphic service in Prussia, and discovered in

       this connection the valuable insulating property of gutta-percha for underground and submarine cables. In 1849 he left the army, and

       shortly after the service of the state altogether, and devoted his energies to the construction of telegraphic and electrical apparatus of all kinds. The well-known firm of Siemens and Halske was established in 1847 in Berlin, and to them the Russian government entrusted the construction of the telegraph lines in that country. Sub[Pg 38]sequently branches were formed, chiefly under the management of the younger brothers of Werner Siemens, in St Petersburg (1857), in London (1858), in Vienna (1858), and in Tiflis (1863). In 1857, Siemens accomplished the remarkable feat of successfully laying a cable in deep water, at a depth of more than 1000 fathoms. This was between Sardinia and Bona. Shortly after he superintended the laying of cables in the Red Sea; and these successful experiments soon led to the greatest undertaking of all, the connection of America with Europe. Besides devising

       10

       numerous useful forms of galvanometers and other electrical instruments of precision, Werner Siemens was one of the discoverers of the principle of the self-acting dynamo. He also made valuable determinations of the electrical resistance of different substances, the resistance of a column of mercury, one metre long, and one square millimetre cross section at 0degC., being known as the Siemens Unit. His numerous scientific and technical papers, written for the various journals, were republished in collected form in 1881. In

       1886 he gave 500,000 marks for the founding of an imperial institute of technology and physics; and in 1888 he was ennobled. He died at Berlin, 6th December 1892. A translation of his Personal Recollections by Coupland appeared in 1893.

       Space forbids us mentioning other worthy names in the steel and iron trade, although we cannot pass by Sir John Brown, founder of the Atlas Steel-works, Sheffield (1857), and one of the first to adopt the Bessemer process. He was also the pioneer of armour-plate making. The immense strides he made in business may be judged from the fact that when he started in 1857 his employees numbered 200, with a turnover of PS3000 a year; in 1867 they numbered 4000, and the turnover was PS1,000,000.[Pg 39] The weekly pay roll amounted to PS7000 in 1883, and when he handed over the business to his successors, he was paid PS200,000 for the goodwill.

       KRUPP'S IRON AND STEEL WORKS AT ESSEN.

       One of the largest iron and steel manufacturing establishments in the world is that founded by the late Alfred Krupp, the famous German cannon-founder, whose name is so well known in connection with modern improvements in artillery. His principal works are situated at Essen, in Prussia, in the midst of a district productive of both iron and coal. The town of Essen, which at the beginning of the present century contained less than four thousand inhabitants, has become an important industrial centre, with a population of nearly eighty thousand persons, this increase being chiefly due to the growth of the ironworks, and the consequent demand for labour. In the vicinity of the town, numerous coal and iron mines, many of which are owned by the Krupp firm, are in

       active working, and furnish employment to the large population of the surrounding district. Much of the output of iron ore and coal from these mines is destined for consumption in the vast Krupp works within the town. Those works had their origin in a small iron forge established at Essen in the year 1810 by Frederick Krupp, the father of Alfred Krupp. The elder Krupp was not prosperous; and a lawsuit in which he became involved, and which lasted for ten years, though finally decided in his favour, reduced him nearly to bankruptcy. He died in 1826, in impoverished circumstances, leaving a widow and three sons, the eldest of whom was Alfred, aged fourteen. The business was continued by the widow, who managed, though with difficulty, to procure a good education for her sons. When[Pg 40] the eldest, Alfred, took control of the works in 1848, he found there, as he himself has described, 'three workmen, and more debts than fortune.'

       Krupp's subsequent career affords a remarkable instance of success attained, despite adverse circumstances, by sheer force of ability and energy, in building up a colossal manufacturing business from a humble beginning. On his death in 1887 his only son succeeded him. At the present time, Krupp's works within the town of Essen occupy more than five hundred acres, half of which area is under cover. In 1895, the number of persons in his employ was 25,300, and including members of their families, over 50,000. Of the army of workers, about 17,000 were employed at the works in Essen, the remainder being occupied in the 550 iron and coal mines belonging to the firm, or at the branch works at Sayn Neuwied, Magdeburg, Duisburg, and Engers; or in the iron-mines at Bilbao, in Spain, which produce the best ores. In Krupp's Essen works there are one hundred and twelve steam-hammers, ranging in weight from

       fifty tons down to four hundred pounds. There are 15 Bessemer converters, 18 Martin-furnaces,

Скачать книгу