Exploring Advanced Manufacturing Technologies. Steve Krar

Чтение книги онлайн.

Читать онлайн книгу Exploring Advanced Manufacturing Technologies - Steve Krar страница 38

Exploring Advanced Manufacturing Technologies - Steve Krar

Скачать книгу

better retention (holding power) for the RVG crystal in the wheel bond.

      ▪TYPE RVG-W (Resin, Vitrified, Grinding—Wet) is an RVG diamond with a special nickel coating that covers all surfaces of the crystal, providing a better holding or bonding surface for the resin bond, and results in much longer grinding wheel life.

image image image image

      ▪TYPE RVG-D (Resin, Vitrified, Grinding—Dry) is an RVG diamond with a special copper coating that improves the bonding strength of the diamond in the wheel and controls its fracturing (tiny particles breaking away) under the stresses of grinding.

      Under the pressure and temperatures created when grinding ferrous metals, diamond will react chemically and result in excessive diamond wear.

      WORK MATERIALS

      Diamond is used to machine and grind hard, abrasive nonferrous, nonmetallic, and composite materials. It is not recommended for grinding and machining ferrous materials because of the chemical characteristic known as carbon solubility potential, where steels will react with any source of carbon to absorb carbon into their surface. The reaction occurs under the temperature and pressure created during the grinding or machining process, thus causing excessive wear of the diamond-cutting tool, Fig. 3-1-5.

      CUBIC BORON NITRIDE

      A major breakthrough in the precision high-production grinding of hard, difficult-to-grind ferrous metals, was the discovery and manufacture of cubic boron nitride. CBN is twice as hard as aluminum oxide, and its performance on hardened steels is far superior. CBN is cool cutting, chemically resistant to inorganic salts and organic compounds, and can withstand grinding temperatures up to 1832°F (1000°C) before breaking down. Because of the cool-cutting action of CBN wheels, there is little or no thermal (heat) damage to the surface of the part being ground. The main benefits of grinding wheels made of CBN abrasive are shown in Fig. 3-1-6.

      Manufacture

      CBN is manufactured in crystal form from hexagonal boron nitride, sometimes referred to as white graphite. Hexagonal boron nitride, which is composed of boron and nitrogen atoms along with a solvent catalyst, is converted into cubic boron nitride through the application of heat (3000°F or 1650°C) and pressure (up to 1,000,000 lbs./sq. in., or 68,500 atmospheres). The combination of high temperature and high pressure causes each nitrogen atom to donate an electron to a boron atom, which uses it to form another chemical bond to the nitrogen atom. This produces a strong, hard, blocky, crystalline structure similar to diamond.

image image

      CBN Types

      There are various types of CBN available to suit a variety of steel grinding applications; CBN does not perform well on nonferrous or nonmetallic materials. Two main classes of CBN abrasive are monocrystalline and microcrystalline.

      ▪MONOCRYSTALLINE CBN - Monocrystalline CBN abrasive contains a large number of cleavage (break) planes along which a fracture can occur. This macrofracture (large break) is necessary for the abrasive grains to resharpen themselves when they become dull, Fig. 3-1-7.

      ▪MICROCRYSTALLINE CBN - Microcrystalline CBN abrasive consists of thousands of micron-size crystalline regions tightly bonded to each other to form a 100% dense particle. When the grains dull and the grinding pressure increases, they resharpen themselves by microfracturing (creating very small breaks), Fig. 3-1-8.

      Table 3-1-1 lists the various types of abrasives and the workpiece materials for which each is best suited.

      CHARACTERISTICS OF SUPERABRASIVES

      The main physical properties of superabrasives that make them superior to conventional abrasives are shown in Fig. 3-1-9

      ▪Hardness - The harder the abrasive with respect to the workpiece, the more easily it can cut and remove material. The basic principle in material removal is that the cutting tool must be harder than the material being removed. Hardness of the cutting tool with respect to the material allows higher cutting speeds and greater feeds to decrease the amount of time required to complete the work cycle. Due to the higher hardness, superabrasive tools last longer.

image image image

      ▪Diamond is four times harder than silicon carbide and is used for machining and grinding nonferrous and nonmetallic materials.

      •Cubic boron nitride (CBN) is two and one half times harder than aluminum oxide and is used for machining and grinding ferrous materials.

      ▪Abrasion Resistance - Resistance to abrasive wear is a desirable property in a cutting tool, it increases the productivity by maintaining a sharp cutting edge longer. It also allows increased cutting speeds and feeds, decreasing the time required to complete the work cycle and lessen the time required to maintain the cutting tool.

      •Diamond has three times the abrasive resistance of silicon carbide.

      •CBN has about four times the abrasive resistance of aluminum oxide.

      ▪Compressive

Скачать книгу