So You Want To Be An Engineer. Ray Floyd

Чтение книги онлайн.

Читать онлайн книгу So You Want To Be An Engineer - Ray Floyd страница 7

So You Want To Be An Engineer - Ray Floyd

Скачать книгу

      Besides mathematics and physics, chemical engineers should also do well at both organic and inorganic chemistry. If they do best in organic chemistry, typical jobs will be found in the oil industry as a petroleum engineer, applications engineer, corrosive engineer, and similar job titles. They may also find themselves employed within the chemical industry, involved in the development and manufacture of such products as rubber, tires, carbon black, and fuel oils and gases.

      If the student’s interests lean more to inorganic chemistry, the job opportunities can include employment in the chemical industry involved in the development of new materials, additives, and exotic chemical mixtures, for example, soaps, cleaning materials and other similar products. The inorganic chemical engineer may also find interesting work in the development of new metal mixtures, where the new mix may provide longer product life in corrosive environments, have higher temperature characteristics, or increase malleability under certain stress conditions. Many new materials that have been used in the space program are the result of chemical engineering discoveries.

      Petroleum Engineers are primarily concerned with the recovery of crude oil and natural gases from under the earth’s surface. They will normally study a cross-section of mechanical engineering, geology, and chemistry. Their knowledge of earth structures is critical in the search for new oil deposits, the means of gathering oil and gas, the effectiveness of the recovery process to maximize the return on investment, and the expected life of a particular field. They may be heavily involved in the design of the down-hole equipment used to bring the crude oil to the surface, the transfer from the wellhead to the processing factory, and even the well drilling process itself. They will also have to have training in sub-surface environments, including sub-sea drilling and transfer.

image

      The manufacturing engineer, sometimes called an industrial engineer, is primarily concerned with the movement of products through the manufacturing floor from raw parts to finished product. The concerns cover the movement of parts from inventory to the proper point on the manufacturing floor, to the generation of operator assembly procedures, to the proper functioning of manufacturing tools, and to the routing of the product as it progresses through the entire manufacturing process (product routing). Specific tools needed by the operator will also be identified and/or designed by the manufacturing engineer. In the process of designing new manufacturing tools or fixtures, the manufacturing engineer will call upon many of the same skills found in a mechanical engineer. Such studies as strength of materials, computer-aided drawing (CAD), fixtures, and precision measurements, are all needed in both fields. Assembly procedures will be studied and time-in-motion studies carried out to ensure the procedures embody the most efficient manner of assembly possible. To quote the old adage, “Time is money”. Human factors, safety, and quality control are all facets of the career of a Manufacturing Engineer.

      The field of computer engineering is another one of those careers that may follow one of two very divergent paths. The first path is the design of new computer systems, where the design is more involved with new application specific integrated circuits (ASIC), new methods of using multiple processors for increased throughput, ever decreasing circuit spacing within the chip designs, and similar activities aimed at new computer designs. The second path is more along the lines of designing new operating systems that provide real-time process support, multi-processor support, and new applications for the average user.

      In the first path, the program will more than likely be referred to as computer engineering, whereas the second path may be called computer science. The first path will be more oriented to digital and analog circuit design, with courses and labs designed to support the needs for circuit awareness. The second path will be more involved with the programming of computer systems, from basic assembler, to compilers, to the operating systems needed to support new computers in the most efficient manner possible. In some cases, the two paths may be offered in different departments within the university.

      Now some might say, you almost always field-test products. Yes, very true, often where the field can be a fabric mill, a car rental counter, a hotel lobby, or a deep-water oil rig. Of course, testing is not limited to the field, but may also be undertaken in a test facility within the plant. In the latter case, there will often be specialized equipment not easily transported to the field. For example, in classical tests the equipment — such as temperature-humidity-altitude chambers, anechoic chambers, acoustic chambers, and radio field measurement chambers — are all large physical units not generally portable. The point is that engineering, whatever field chosen, will probably require effort in many different environments, and involvecertain sub-specialties within a given engineering field, be it civil, electrical, mechanical, or some other. One problem with test engineering is that few universities offer such a specialized degree. Test engineers generally develop through assignments in Product Test, or a similar department, where a team performs testing on a new product that includes mechanical tests, electrical tests, and software tests. In many instances, usability testing may be included to ensure the product is useable by the intended user group.

      Some universities offer a degree in Quality Engineering. More often, students who have an interest in becoming a Quality Engineer will study a number of general engineering courses, winding up with a degree in Electrical, Mechanical, or Manufacturing Engineering. For the engineering student interested in becoming a Quality Engineer, courses in statistics, simulation, and quantitative management will provide some of the tools that will be needed.

      What then does the new graduate expect to do as a Quality Engineer? To begin with, the Quality Engineer will function as part of the Development Team, consisting of Development, Quality, Product Test, Manufacturing, and Marketing members. In this role, the Quality Engineer will be involved with new product development, early manufacturing verification, first article inspection (new parts from vendors), part failure root cause analysis, field tests, and final product manufacturing release. Other areas that require Quality Engineering support are vendor qualification, operator process procedure evaluation and qualification, standards adherence, and product sampling for correct operation. The Quality Engineer touches many aspects of a product from its inception to final delivery. Quality Engineers may find opportunities in either Quality Assurance or Quality Control.

      The Civil Engineer may well be the one who we see in action most frequently, and whose work we benefit from daily. They are responsible for roads, community and city planning, railroads, as well as many other project aspects available for our daily use. The Roman engineers who were responsible for the road and city layouts were the forerunners of today’s civil engineers. Civil Engineers are the largest single engineering group of all Professional Engineers (with Surveying Engineers second). This certification is required by most states as a protection for the safety and reliability of public-use structures such as buildings, towers, bridges, and roadways. Relevant courses include dynamics, statics, strength of materials, architecture design, and structural strength, which provide the underlying theory needed to ensure the structures being used are safe.

Скачать книгу