The New Art and Science of Classroom Assessment. Robert J. Marzano

Чтение книги онлайн.

Читать онлайн книгу The New Art and Science of Classroom Assessment - Robert J. Marzano страница 6

The New Art and Science of Classroom Assessment - Robert J. Marzano The New Art and Science of Teaching

Скачать книгу

It is easiest to understand the nature of a proficiency scale if we start with the content at the score 3.0 level. It reads, The student will explain how vision (sight) is a product of light reflecting off objects and entering the eye. This is the desired level of expertise for students. When students can demonstrate this level of competence, teachers consider them to be proficient.

      Understanding the score 2.0 content is necessary to demonstrate competency on the score 3.0 content, which teachers will directly teach to students. In the proficiency scale, score 2.0 content reads, The student will recognize or recall specific vocabulary (for example, brain, cone, cornea, image, iris, lens, light, optic nerve, perpendicular angle, pupil, reflection, retina, rod, sight, dilate) and perform basic processes, such as:

      • Describe physical changes that happen in the eye as a reaction to light (for example, the pupil dilates and contracts)

      • Trace the movement of light as it moves from a source, reflects off an object, and enters the eye

      • Diagram the human eye and label its parts (cornea, iris, pupil, lens, retina, optic nerve)

      • Describe the function of rods and cones in the eye

      • Recognize that the optic nerve carries information from both eyes to the brain, which processes the information to create an image

      The score 4.0 content requires students to make inferences and applications that go above and beyond the score 3.0 content. In the proficiency scale, it reads, In addition to score 3.0 performance, the student will demonstrate in-depth inferences and applications that go beyond what was taught. For example, the student will explain how distorted light impacts vision (for example, explain why a fish in clear water appears distorted due to light refraction). The example provides one way in which the student might demonstrate score 4.0 performance.

      The other scores in the scale do not contain new content but do represent different levels of understanding relative to the content. For example, score 1.0 means that with help, the student has partial understanding of some of the simpler details and processes and some of the more complex ideas and processes. And score 0.0 means that even with help, the student demonstrates no understanding or skill. The scale also contains half-point scores, which signify achievement between two whole-point scores. Again, we address proficiency scales in depth in chapter 2 (page 25).

      With a series of scores on a proficiency scale as opposed to a one hundred–point scale, a teacher can more accurately estimate a summative score using antecedent formative scores. This is because we can reference a score on a proficiency scale to a continuum of knowledge, regardless of the test format. A score of 3.0 on a test means that the student has demonstrated competence regardless of the type of test. This is not the case with the one hundred–point scale. For example, a teacher can only interpret a score of 85 in terms of levels of knowledge if he or she examines the items on the test. This characteristic of proficiency scales suits them well for examining trends in learning. To illustrate, consider the following pattern of proficiency scale scores for a student on a specific topic.

      1.0, 2.0, 2.0, 3.0, 2.5

      The first score of 1.0 indicates that in the beginning of the grading period, the student demonstrates little knowledge of the topic on his or her own but with help, should have some understanding of the score 2.0 and 3.0 content. By the time the next assessment occurs, the student seems to have a solid knowledge of the score 2.0 content, which carries on into the third assessment. Such content involves basic information the teacher directly teaches. The fourth assessment sees a big jump in understanding, indicating that the student knows the score 2.0 and 3.0 content. However, on the final assessment, the student score of 2.5 indicates a solid understanding of the score 2.0 content but only partial understanding of the score 3.0 content. Even though this student’s pattern does not show growth across every assessment, it still provides enough evidence for the teacher to assign a summative score of at least 2.5. Proficiency scales make the new paradigm for classroom assessments concrete and viable.

      Chapter 1, “The Assessment-Friendly Curriculum,” provides evidence for the claim that virtually every state’s standards simply contain too much content to effectively assess, let alone teach. Consequently, classroom educators must identify the critical content within the standards to explicitly teach and measure in order to determine students’ current status as well as their growth. Chapter 2, “Proficiency Scales,” points out that it’s not enough to identify specific learning targets for students relative to each topic. To measure student growth, teachers must develop well-defined continua of knowledge for each topic. These continua form the basis for designing scales teachers can use to develop assessments and plan instruction. Chapter 3, “Parallel Assessments,” not only describes the defining characteristics of parallel assessments in detail but also provides specific guidelines about how to create such assessments. In addition, it describes how to score parallel assessments. Chapter 4, “The Measurement Process and Different Types of Assessments,” presents a way of viewing classroom assessment and scoring as a seamless and united endeavor that represents the new paradigm of classroom assessment. Chapter 5, “Summative Scores,” describes techniques that allow teachers to determine the level of precision they can assign to scores for individual students. Some of these techniques require the aid of technology, and some do not. Chapter 6, “Non-Subject-Specific Skills,” addresses subject areas such as cognitive skills and metacognitive skills. These skills are commonly mentioned in standards documents but do not fit into any one subject area. Chapter 7, “Record Keeping and Reporting,” addresses not only how teachers can efficiently keep records of scores from classroom assessments but also how to transform those scores into report cards that demonstrate each student’s status and growth.

      Finally, note that this book does not address the technical and psychometric issues that accompany the recommendations that we make. For a thorough discussion of these matters, the reader should consult Making Classroom Assessments Reliable and Valid (Marzano, 2018).

      If classroom assessments are to fulfill their bright promise, educators must recognize that large-scale assessment theory is not the appropriate tool for designing and administering teacher-designed assessments. Rather, educators must employ a new theory base specific to the classroom. This book presents that theory.

Image

      CHAPTER 1

      The Assessment-Friendly Curriculum

      The starting place for a new assessment paradigm is a curriculum that provides teachers with clear guidance in terms of what they should assess and how they should assess it. At first, this might sound like a very simple undertaking. After all, don’t schools and districts already have standards that teachers are supposed to follow when designing assessments? While the answer to this question is yes, the standards themselves do not provide much assessment guidance. That is one of the primary messages of this chapter. In fact, national, provincial, state, and local standards as currently written actually muddy the waters in terms of classroom assessments. More pointedly, we believe that the standards

Скачать книгу