Writings of Charles S. Peirce: A Chronological Edition, Volume 6. Charles S. Peirce

Чтение книги онлайн.

Читать онлайн книгу Writings of Charles S. Peirce: A Chronological Edition, Volume 6 - Charles S. Peirce страница 19

Автор:
Серия:
Издательство:
Writings of Charles S. Peirce: A Chronological Edition, Volume 6 - Charles S. Peirce

Скачать книгу

at the rate of one a day, with good result, and not at an extravagant expense” (28 May 1889). He asked Thorn again to send him back into the field to institute his new plan as soon as he finished his pendulum report, which he said would be forwarded soon. Thorn replied on 14 June with a reminder of Peirce’s “repeated promises during the past winter” that he would soon forward the report, “and now the Spring has passed.” He advised Peirce “that no other enterprise or scheme be permitted to interfere with the prompt completion of that long delayed report, upon receipt of which your plan of daily pendulum stations will be in order for submission and consideration.”

      On 10 July 1889, Thorn was succeeded by Thomas Corwin Mendenhall as Superintendent of the Coast Survey. Mendenhall, who had been a student of Simon Newcomb,42 was a physicist who had taught at universities in Ohio and Tokyo before joining the U.S. signal-service in 1884. In 1886 he had assumed the presidency of Rose Polytechnic Institute in Indiana, and it was from there that he had been called to the superintendency of the Coast Survey. Mendenhall seemed well suited to lead the Survey and Peirce was delighted with his appointment. Peirce’s telegram of congratulations, sent to Indiana, was the first that Mendenhall received and he replied that it had given him great satisfaction. Peirce sent his first monthly report to Mendenhall on 31 July and took the opportunity to give a very detailed account of his pendulum work for the many years he had been in charge of gravity research. He also described at length his relations with Thorn and his general unhappiness with the direction the Survey had taken over the last half-decade.

      When Mr. Thorn came in, certain charges were made against me. Later, all these were retracted with the exception of one, which was a very vague one to the effect that I had not been under proper control and discipline. Now, if I were to be informed what the questions about gravitation were, and what the facts of the case on which the solution of those questions must depend, all the discipline in the world could hardly prevent my having my way, for the simple reason that “my way” is simply what I deem reasonable, and as my ideas on this subject are clearer than other persons’, they must prevail with those very persons themselves. Accordingly, to prevent my having “my way,” I have of late years been kept as far as possible ignorant of pendulum matters. I trust you will reverse this policy, and restore me to the charge of investigations into gravitation.

      As to the report Thorn had been waiting for so impatiently, Peirce wrote that it was in a typist’s hands. He had been working on a new arrangement for the report and now intended to submit it in two parts with the first one covering the work done at the Smithsonian, Ann Arbor, Madison, Cornell, and Key West. There were yet further delays, but finally on 20 November Peirce was able to write the agreeable letter that would accompany his long-delayed report (sel. 36). Although it did not include the Key West results, his submission included all of the theory, history, and discussion of constants needed for the complete report on the Peirce pendulum operations. As it was, the report ran to one hundred and forty oversize typescript pages. Peirce promised that a report on Montreal, Albany, Hoboken, Fort Monroe, St. Augustine, and Key West would soon follow, and could be published later as the concluding part of the comprehensive report.

      Although Peirce’s report included all of the basic component sections present in his 1879 report (W4: sel. 13), it strikingly reversed their arrangement. Peirce also used radically different methods, the most obvious one being the introduction of “logarithmic seconds” as a unit of measurement. He also made a different application of the “resistential formula” which occurs in both reports as the basis for calculating the effect of air resistance. It is in this determination of corrections for the “second atmospheric effect” that Peirce hoped to improve on the classical theory of G. G. Stokes. As the annotations in this volume help to make out, though all of the necessary components are present, they do not all fit together entirely smoothly, and the report is marred by computational errors. This is not surprising, given the massive quantity of calculations that Peirce had to make in order to achieve his results; it is clear, however, that the report needed a thorough overhaul before it could be published.

      Perhaps had Thorn still been superintendent, Peirce’s report would have followed a standard course of technical examination, proofreading, and publication, but Mendenhall was new, and he had been encouraged not to fully trust Peirce’s work, so he chose to have Peirce’s report examined by specialists for “form, matter, meaning and suitability for publication.” One of the three people he asked to examine the report was his own mentor, Simon Newcomb. On 28 April 1890, only four days after Peirce’s long memoir had been mailed to him, Newcomb wrote to Mendenhall that it appeared to be “a careful and conscientious piece of work,” but that its form was wrong:

      A remarkable feature of the presentation is the inversion of the logical order throughout the whole paper. The system of the author seems to be to give first concluded results, then the method by which these results were obtained, then the formulae and principles on which these methods rest, then the derivation of these formulae, then the data on which the derivation rests, and so on until the original observations are reached. The human mind cannot follow a course of reasoning in this way, and the first thing to be done with the paper is to reconstruct it in logical order.

      Newcomb also objected to Peirce’s reliance on logarithmic seconds, which he believed accomplished nothing except to confuse the reader. “On the whole the paper does not seem to me one which would prove useful scientifically or would redound to the credit of the Survey if published in its present form.” Ultimately, Mendenhall would decline to publish Peirce’s laboriously ground-out report and would justify his decision with words that echoed Newcomb. On 21 September the following year, having decided that Peirce’s report as submitted was not publishable, and still waiting for the report for the north-south stations, Mendenhall would inform Peirce that his services would be discontinued at the end of 1891. That would bring to an end Peirce’s thirty-one years of federal service and, without a pension, Peirce would have no regular income. As for Peirce’s 1889 report, it would be bundled up in brown wrapping and sent to the archives where it would disappear, mislaid, for more than seventy-five years.

      At the end of the period covered by the writings in this volume, Peirce’s report was still under review, and nearly a year and a half would pass before Mendenhall would write the letter informing Peirce that his services were no longer desired. But given how much time Peirce spent preparing the 1889 report, and how crucial a role it played in determining his fate, it seems appropriate to consider a little further some of the circumstances pertaining to the report’s composition and quality. A number of delaying factors have already been noted, including Peirce’s commitment to other writings and projects, his attending to family matters, and also his discouragement, perhaps even depression, over his treatment by the Washington office. But Victor Lenzen, in the best study to date of this report,43 emphasized two additional factors that must be taken into account.

      Since 1883, Peirce had waited in vain for new pendulums from Paris, with which he hoped to improve upon the results obtained with the set of Peirce pendulums. The latter had been manufactured in the U.S. in 1881, and data obtained from their use required many corrections that could be avoided with better constructed pendulums. While in Paris in 1883, Peirce had arranged with P. F. Gautier, instrument maker for the French Bureau of Longitude, for new pendulums to be constructed according to his own improved design, and it was a constant source of frustration that he had not been allowed to stay in France until the pendulums were finished. He kept hoping until his final days with the Survey that they would be sent for.

      A related but more general reason for Peirce’s slow progress was his insistence, for his own reputation and that of the Survey, that his pendulum work met the highest standards of scientific performance. He could not accept the view that had become entrenched in all levels of U.S. Government that only fast practical results were wanted. Peirce was working to advance science, and it was thanks to the precision of his research that he had earned the respect of his peers. He could not surrender to what he believed to be anti-science.

      Another important factor in that contributed to the demise of Peirce’s report was Mendenhall’s

Скачать книгу