The Henri Bergson Megapack. Henri Bergson

Чтение книги онлайн.

Читать онлайн книгу The Henri Bergson Megapack - Henri Bergson страница 18

The Henri Bergson Megapack - Henri Bergson

Скачать книгу

for complementary variations, and then correlation in general is spoken of as if it were any group of variations provoked by any variation of the germ. Thus, the notion of correlation is first used in current science as it might be used by an advocate of finality; it is understood that this is only a convenient way of expressing oneself, that one will correct it and fall back on pure mechanism when explaining the nature of the principles and turning from science to philosophy. And one does then come back to pure mechanism, but only by giving a new meaning to the word “correlation”—a meaning which would now make correlation inapplicable to the detail it is called upon to explain.

      To sum up, if the accidental variations that bring about evolution are insensible variations, some good genius must be appealed to—the genius of the future species—in order to preserve and accumulate these variations, for selection will not look after this. If, on the other hand, the accidental variations are sudden, then, for the previous function to go on or for a new function to take its place, all the changes that have happened together must be complementary. So we have to fall back on the good genius again, this time to obtain the convergence of simultaneous changes, as before to be assured of the continuity of direction of successive variations. But in neither case can parallel development of the same complex structures on independent lines of evolution be due to a mere accumulation of accidental variations. So we come to the second of the two great hypotheses we have to examine. Suppose the variations are due, not to accidental and inner causes, but to the direct influence of outer circumstances. Let us see what line we should have to take, on this hypothesis, to account for the resemblance of eye-structure in two series that are independent of each other from the phylogenetic point of view.

      Though molluscs and vertebrates have evolved separately, both have remained exposed to the influence of light. And light is a physical cause bringing forth certain definite effects. Acting in a continuous way, it has been able to produce a continuous variation in a constant direction. Of course it is unlikely that the eye of the vertebrate and that of the mollusc have been built up by a series of variations due to simple chance. Admitting even that light enters into the case as an instrument of selection, in order to allow only useful variations to persist, there is no possibility that the play of chance, even thus supervised from without, should bring about in both cases the same juxtaposition of elements coördinated in the same way. But it would be different supposing that light acted directly on the organized matter so as to change its structure and somehow adapt this structure to its own form. The resemblance of the two effects would then be explained by the identity of the cause. The more and more complex eye would be something like the deeper and deeper imprint of light on a matter which, being organized, possesses a special aptitude for receiving it.

      But can an organic structure be likened to an imprint? We have already called attention to the ambiguity of the term “adaptation.” The gradual complication of a form which is being better and better adapted to the mold of outward circumstances is one thing, the increasingly complex structure of an instrument which derives more and more advantage from these circumstances is another. In the former case, the matter merely receives an imprint; in the second, it reacts positively, it solves a problem. Obviously it is this second sense of the word “adapt” that is used when one says that the eye has become better and better adapted to the influence of light. But one passes more or less unconsciously from this sense to the other, and a purely mechanistic biology will strive to make the passive adaptation of an inert matter, which submits to the influence of its environment, mean the same as the active adaptation of an organism which derives from this influence an advantage it can appropriate. It must be owned, indeed, that Nature herself appears to invite our mind to confuse these two kinds of adaptation, for she usually begins by a passive adaptation where, later on, she will build up a mechanism for active response. Thus, in the case before us, it is unquestionable that the first rudiment of the eye is found in the pigment-spot of the lower organisms; this spot may indeed have been produced physically, by the mere action of light, and there are a great number of intermediaries between the simple spot of pigment and a complicated eye like that of the vertebrates.—But, from the fact that we pass from one thing to another by degrees, it does not follow that the two things are of the same nature. From the fact that an orator falls in, at first, with the passions of his audience in order to make himself master of them, it will not be concluded that to follow is the same as to lead. Now, living matter seems to have no other means of turning circumstances to good account than by adapting itself to them passively at the outset. Where it has to direct a movement, it begins by adopting it. Life proceeds by insinuation. The intermediate degrees between a pigment-spot and an eye are nothing to the point: however numerous the degrees, there will still be the same interval between the pigment-spot and the eye as between a photograph and a photographic apparatus. Certainly the photograph has been gradually turned into a photographic apparatus; but could light alone, a physical force, ever have provoked this change, and converted an impression left by it into a machine capable of using it?

      It may be claimed that considerations of utility are out of place here; that the eye is not made to see, but that we see because we have eyes; that the organ is what it is, and “utility” is a word by which we designate the functional effects of the structure. But when I say that the eye “makes use of” light, I do not merely mean that the eye is capable of seeing; I allude to the very precise relations that exist between this organ and the apparatus of locomotion. The retina of vertebrates is prolonged in an optic nerve, which, again, is continued by cerebral centres connected with motor mechanisms. Our eye makes use of light in that it enables us to utilize, by movements of reaction, the objects that we see to be advantageous, and to avoid those which we see to be injurious. Now, of course, as light may have produced a pigment-spot by physical means, so it can physically determine the movements of certain organisms; ciliated Infusoria, for instance, react to light. But no one would hold that the influence of light has physically caused the formation of a nervous system, of a muscular system, of an osseous system, all things which are continuous with the apparatus of vision in vertebrate animals. The truth is, when one speaks of the gradual formation of the eye, and, still more, when one takes into account all that is inseparably connected with it, one brings in something entirely different from the direct action of light. One implicitly attributes to organized matter a certain capacity sui generis, the mysterious power of building up very complicated machines to utilize the simple excitation that it undergoes.

      But this is just what is claimed to be unnecessary. Physics and chemistry are said to give us the key to everything. Eimer’s great work is instructive in this respect. It is well known what persevering effort this biologist has devoted to demonstrating that transformation is brought about by the influence of the external on the internal, continuously exerted in the same direction, and not, as Darwin held, by accidental variations. His theory rests on observations of the highest interest, of which the starting-point was the study of the course followed by the color variation of the skin in certain lizards. Before this, the already old experiments of Dorfmeister had shown that the same chrysalis, according as it was submitted to cold or heat, gave rise to very different butterflies, which had long been regarded as independent species, Vanessa levana and Vanessa prorsa: an intermediate temperature produces an intermediate form. We might class with these facts the important transformations observed in a little crustacean, Artemia salina, when the salt of the water it lives in is increased or diminished.[32] In these various experiments the external agent seems to act as a cause of transformation. But what does the word “cause” mean here? Without undertaking an exhaustive analysis of the idea of causality, we will merely remark that three very different meanings of this term are commonly confused. A cause may act by impelling, releasing, or unwinding. The billiard-ball, that strikes another, determines its movement by impelling. The spark that explodes the powder acts by releasing. The gradual relaxing of the spring, that makes the phonograph turn, unwinds the melody inscribed on the cylinder: if the melody which is played be the effect, and the relaxing of the spring the cause, we must say that the cause acts by unwinding. What distinguishes these three cases from each other is the greater or less solidarity between the cause and the effect. In the first, the quantity and quality of the effect vary with the quantity and quality of the cause. In the second, neither quality nor quantity of the effect varies with quality and quantity of the cause: the effect is invariable. In the third, the quantity

Скачать книгу