GIS Tutorial for Health. Wilpen L. Gorr

Чтение книги онлайн.

Читать онлайн книгу GIS Tutorial for Health - Wilpen L. Gorr страница 9

GIS Tutorial for Health - Wilpen L. Gorr GIS Tutorials

Скачать книгу

study is a sample of serious-injury data that has been geocoded and can be compared to census data on poverty and to map layers for streets, neighborhoods, and parks that have playgrounds and playing fields.

      The GIS work in chapter 7 includes preparatory steps for extracting study region maps from county maps, and then focuses on detailed proximity analyses using park buffers, like those seen in figure 1.2.

       Chapter 8: Transforming data using approximate methods

      How can health-care analysts combine data from different, incompatible polygon boundary sets? Chapter 8 explores how to transform this data so it can be used for comparative analysis. Often the spatial unit of analysis for a health study is a custom set of polygon boundaries designed for the phenomenon at hand. An example is the hospital service areas and hospital referral regions used in the Dartmouth Atlas of Health Care Project (http://www.dartmouthatlas.org) at the Center for the Evaluative Clinical Sciences at Dartmouth Medical School in Hanover, New Hampshire. Although appropriate for studying patterns in the quality of health care across the country, these custom areas have the limitation of not sharing boundaries with census statistical areas (that is, they are noncoterminous sets of boundaries). Thus, census data cannot be used directly for supportive analysis of these custom areas and must be spatially apportioned to the noncoterminous boundaries.

      Another common case of noncoterminous data involves regional analysis of spatial areas such as emergency management service zones for a city where such zones become the de facto unit of spatial analysis. Detailed census variables on income, poverty, educational attainment, and so on are not easily attainable at these levels. Advanced GIS functionality such as using spatial joins, however, can produce some very accurate approximations (or apportionments) for transforming data from one set of polygons to another incompatible set.

       Chapter 9: Using ArcGIS Spatial Analyst for demand estimation

      Chapter 9 is an introduction to the ArcGIS Spatial Analyst extension. Spatial Analyst uses or creates raster datasets composed of grid cells to display data that is distributed continuously over space as one continuous surface. In this chapter, you prepare and analyze a demand surface map for the location of heart defibrillators in Pittsburgh, where demand is based on the number of out-of-hospital cardiac arrests in which potential bystander help is available. You also learn how to use ArcGIS Spatial Analyst to create a poverty index surface combined with several census data measures from block and block group polygon layers.

       Chapter 10: Studying food-borne-disease outbreaks

      Chapters 10 and 11 provide a change of pace — opportunities for you to apply and extend the GIS skills and health applications you have learned in the previous nine chapters to new case studies that you develop. We provide the source data and guidelines for analysis, as well as a broad outline of steps; however, it is up to you to carry out the GIS work on your own in an independent case study. In chapter 10, you prepare map layers, including geocoding incidence addresses as the basis for analyzing outbreaks of food-borne illness. Then you use data to simulate the impact of an outbreak. You also do a proximity analysis based on patterns in reported disease cases.

       Chapter 11: Forming local chapters of ACHE

      Chapter 11 concludes this workbook with a second independent case study, following a setup similar to that in chapter 10. Staff members of the American College of Healthcare Executives (ACHE) want you to use GIS to help them set up ACHE chapters across the country that provide educational and other services to health-care professionals.

      In chapter 11, you perform a buffer analysis of existing affiliates that propose becoming ACHE chapters. The buffers will help determine the territories that are served as well as the gaps that suggest where new chapters should be established. You do some work interactively using ArcGIS, but for steps that must be done repeatedly over time, you build an ArcGIS model that generates a macro to automate these steps.

      This book is designed for use with ArcGIS 10.2 for Desktop software. ArcGIS is a full-featured GIS software application for visualizing, managing, creating, and analyzing geographic data. The more advanced levels of ArcGIS offer advanced data conversion and geoprocessing capabilities. ArcGIS has numerous extensions that include ArcGIS 3D Analyst for three-dimensional rendering of surfaces, ArcGIS Network Analyst for routing and other street network applications, and ArcGIS Spatial Analyst for generating and working with raster maps.

      ArcGIS includes four application programs: ArcCatalog, ArcGlobe, ArcMap, and ArcScene. ArcCatalog is a utility program for file browsing, data importing and converting, and file maintenance functions (such as create, copy, and delete) — all with special features for GIS source data. You will use ArcCatalog instead of the Microsoft Windows utilities My Computer or Windows Explorer to manage GIS source data. ArcGlobe provides 3D capabilities to work seamlessly on a 3D globe. ArcMap is the primary interface for building, viewing, and analyzing conventional two-dimensional (2D) maps. ArcScene is comparable to ArcMap but for 3D maps.

      GIS analysts use ArcMap to compose a map from basemap layers, and then carry out many kinds of analysis and produce several types of GIS outputs. A map composition is saved to a map document file and has a name, chosen by the user, and the .mxd file extension. For example, you will soon open the first map document in the chapter, Tutorial1-3.mxd.

      A map document stores pointers (paths) to map layers, data tables, and other data sources for use in a map composition, but it does not store a copy of any data source. Consequently, map layers can be stored anywhere on your computer, local area network, or even on an Internet server, and be part of your map document. In this book, you will use data sources available from the data you will download from the Esri Press “Book Resources” webpage (see the following section).

      Exercise data and software

      Data for the book is available to download on the Esri Press “Book Resources” webpage, esripress.esri.com/bookresources. Click the appropriate book title, and then click the data link under “Resources” to download the exercise data. A 60-day trial of ArcGIS for Desktop software and extensions is available for readers at esri.com/trydesktop. You must download the data and have access to ArcGIS 10.2 for Desktop software to complete the tutorials in this book.

      The following tutorials will acquaint you with the functionality and user interface of ArcMap and ArcCatalog. You will start by using ArcCatalog to browse through the data sources used in figure 1.1, and then examine the completed project itself. In the remaining chapters, you will learn how to build, modify, and query data.

      In the tutorials that follow, you need to be at your computer to carry out the numbered steps. Screen captures accompanying the steps illustrate important dialog boxes and output. Occasionally, we have added “Your turn” exercises after a series of steps. It is critical that you do these brief exercises to internalize the processes covered. Note that the appearance of the user interface is contantly changing, depending on

Скачать книгу