Renewable Energy. David Elliott

Чтение книги онлайн.

Читать онлайн книгу Renewable Energy - David Elliott страница 8

Автор:
Жанр:
Серия:
Издательство:
Renewable Energy - David  Elliott

Скачать книгу

Chapter 5 looks at the issue of growth, and at the need for a socially equitable transition process, while chapter 6 focuses on the wider geopolitics of the transition. Chapter 7 looks at some examples of what is happening around the world, leading to an overall conclusion in chapter 8.

      Energy metrics and climate impacts – a short guide

      The emphasis in this book is on energy policy, in particular the technological choices ahead. I have tried to use plain English and avoid technical terms but, inevitably, getting on top of what is a complex field requires some understanding of basic energy systems and technology and related issues. Box 1.3 provides a short guide to the measurement units used in this book. Perhaps surprisingly, not all of the metrics used are uncontroversial.

       Box 1.3 Energy and power units

      The terms ‘power’ and ‘energy’ are sometimes used interchangeably, which can be confusing. In this book, ‘power’ is used to mean electric power, whereas ‘energy’ covers all sources/end uses (power, heat and transport), not just electricity, although of course some electricity is used for heating and for transport.

      There will always be losses in energy conversion from one form to another and so, for a generation system, the finally available end-use energy will be less than the so-called primary energy inputs (for example, the energy in the fuel used in fossil-fuel-fired plants). The actual energy output of a generation plant will also usually be less than the theoretical full output possible for the plant, especially for systems using variable renewable sources, since they cannot deliver their full theoretic­ally possible output all the time. ‘Capacity factors’ (also called ‘load factors’) are cited for the percentage of the theoretical maximum output capacity that is actually available annually to meet demand loads.

      There are some issues with the way renewables are handled in energy analysis, since renewables like wind and solar do not use fuel. To produce a figure for primary energy that is compatible with those used for fossil fuel plans, the output from the renewable plant is sometime ‘grossed up’ by a factor of around three, to reflect the amount of primary fossil energy that would have to be used (given the large losses in fossil energy conversion) to produce the same output. The same is sometimes done with nuclear plants and biomass plants. It might be argued that it would better just to compare final energy outputs in each case. But, done that way round, to get the same output as a wind or solar plant a fossil plant could be depicted as having, nominally, to consume around three times more primary fuel (Sauar 2017).

       Box 1.4 Energy end uses and emissions

      In terms of what the various energy sources are used for, put very simply, although it varies significantly around the world, the total primary energy that is used for (electric) power generation, for heating and for transport is very roughly split in equal amounts amongst these three end uses, but that pattern is changing with, in some cases, transport taking more.

      In terms of carbon dioxide gas emissions from fossil fuel use, total emissions from direct energy production/use have stabilized globally in recent years but rose slightly (by 1.7%) in 2018. Although it varies round the world, there are, very roughly, equal proportions of global greenhouse gas emissions from energy generation (heat and power), transport, industry and agriculture (IEA 2019a). The historical record of emissions illustrates how emissions rose as countries industrialized, led initially by the United Kingdom and then the United States but with China now in the lead (GCP 2020).

      For details of energy use and some of the resultant impacts, the UK situation is reported in the annual Digest of UK Energy Statistics (DUKES 2019), the Energy Information Administration produces data on the US situation (EIA 2019), while BP publishes annual global energy outlooks (BP 2019), as does the IEA (IEA 2019a). The IEA’s latest data suggest that global emissions have stabilized again, in part due to reductions in coal use in the United States and the EU (IEA 2020).

      However, if nothing is done to halt or reduce emissions, the impacts will get worse, making adaptation progressively harder, more expensive and in the end futile. It is the same for carbon dioxide removal from the atmosphere: at best, it can deal with some old emissions but more likely, as with post-combustion carbon capture and storage of CO2 from power plants, it may just be used to compensate for continued fossil fuel use. Carbon capture nevertheless might reduce the associated climate impacts, although there will be limits to the storage space for CO2. As with adaptation, it is not a long-term answer to climate change and the impacts of continued fossil fuel use. Avoiding emissions at source is a more fundamental, effective and sustainable approach (Schumacher 2019a).

      My aim in this book is to ask, how far can the use of renewable energy sources allow us to move in that direction? Can they help us to cut emissions substantially or even entirely, and, if so, when and at what cost?

       To set the scene, this chapter looks in outline at the key renewable options and systems, their potentials, costs and problems. It reviews the basic issues of choice at stake and also looks at how rapidly the options might be deployed.

      The renewable options

      Natural energy flows can be tapped and converted into mechanical power and then electrical energy, as in hydro projects, and by wind-, wave- and tide-driven devices. In addition, there are systems which use natural sources of heat, either directly

Скачать книгу