Efficient Processing of Deep Neural Networks. Vivienne Sze

Чтение книги онлайн.

Читать онлайн книгу Efficient Processing of Deep Neural Networks - Vivienne Sze страница 23

Efficient Processing of Deep Neural Networks - Vivienne Sze Synthesis Lectures on Computer Architecture

Скачать книгу

Earlier DNN benchmarking efforts including DeepBench [116] and Fathom [117] have now been subsumed by MLPerf.

image

      A DNN-centric version of Little’s Law would have throughput measured in inferences per second, latency measured in seconds, and inferences-in-flight, as the tasks-in-flight equivalent, measured in the number of images in a batch being processed simultaneously. This helps to explain why increasing the number of inferences in flight to increase throughput may be counterproductive because some techniques that increase the number of inferences in flight (e.g., batching) also increase latency.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4R3ARXhpZgAATU0AKgAAAAgABwESAAMAAAABAAEAAAEaAAUAAAABAAAAYgEbAAUAAAABAAAA agEoAAMAAAABAAIAAAExAAIAAAAeAAAAcgEyAAIAAAAUAAAAkIdpAAQAAAABAAAApAAAANAALcbA AAAnEAAtxsAAACcQQWRvYmUgUGhvdG9zaG9wIENTNiAoV2luZG93cykAMjAyMDowNjoyNSAxMDo0 NzozMwAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAIw6ADAAQAAAABAAAK1AAAAAAAAAAGAQMAAwAA AAEABgAAARoABQAAAAEAAAEeARsABQAAAAEAAAEmASgAAwAAAAEAAgAAAgEABAAAAAEAAAEuAgIA BAAAAAEAAByKAAAAAAAAAEgAAAABAAAASAAAAAH/2P/tAAxBZG9iZV9DTQAB/+4ADkFkb2JlAGSA AAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMD

Скачать книгу