Six Lectures on Light. John Tyndall
Чтение книги онлайн.
Читать онлайн книгу Six Lectures on Light - John Tyndall страница 7
From what has been said, it is clear that two observers standing beside each other, or one above the other, nay, that even the two eyes of the same observer, do not see exactly the same bow. The position of the base of the cone changes with that of its apex. And here we have no difficulty in answering a question often asked—namely, whether a rainbow is ever seen reflected in water. Seeing two bows, the one in the heavens, the other in the water, you might be disposed to infer that the one bears the same relation to the other that a tree upon the water's edge bears to its reflected image. The rays, however, which reach an observer's eye after reflection from the water, and which form a bow in the water, would, were their course from the shower uninterrupted, converge to a point vertically under the observer, and as far below the level of the water as his eye is above it. But under no circumstances could an eye above the water-level and one below it see the same bow—in other words, the self-same drops of rain cannot form the reflected bow and the bow seen directly in the heavens. The reflected bow, therefore, is not, in the usual optical sense of the term, the image of the bow seen in the sky.
§ 7. Analysis and Synthesis of Light. Doctrine of Colours.
In the rainbow a new phenomenon was introduced—the phenomenon of colour. And here we arrive at one of those points in the history of science, when great men's labours so intermingle that it is difficult to assign to each worker his precise meed of honour. Descartes was at the threshold of the discovery of the composition of solar light; but for Newton was reserved the enunciation of the true law. He went to work in this way: Through the closed window-shutter of a room he pierced an orifice, and allowed a thin sunbeam to pass through it. The beam stamped a round white image of the sun on the opposite wall of the room. In the path of this beam Newton placed a prism, expecting to see the beam refracted, but also expecting to see the image of the sun, after refraction, still round. To his astonishment, it was drawn out to an image with a length five times its breadth. It was, moreover, no longer white, but divided into bands of different colours. Newton saw immediately that solar light was composite, not simple. His elongated image revealed to him the fact that some constituents of the light were more deflected by the prism than others, and he concluded, therefore, that white light was a mixture of lights of different colours, possessing different degrees of refrangibility.
Let us reproduce this celebrated experiment. On the screen is now stamped a luminous disk, which may stand for Newton's image of the sun. Causing the beam (from the aperture L, fig. 7) which produces the disk to pass through a lens (E), we form a sharp image of the aperture. Placing in the track of the beam a prism (P), we obtain Newton's coloured image, with its red and violet ends, which he called a spectrum. Newton divided the spectrum into seven parts—red, orange, yellow, green, blue, indigo, violet; which are commonly called the seven primary or prismatic colours. The drawing out of the white light into its constituent colours is called dispersion.
Fig. 7.
This was the first analysis of solar light by Newton; but the scientific mind is fond of verification, and never neglects it where it is possible. Newton completed his proof by synthesis in this way: The spectrum now before you is produced by a glass prism. Causing the decomposed beam to pass through a second similar prism, but so placed that the colours are refracted back and reblended, the perfectly white luminous disk is restored.
Fig. 8.
In this case, refraction and dispersion are simultaneously abolished. Are they always so? Can we have the one without the other? It was Newton's conclusion that we could not. Here he erred, and his error, which he maintained to the end of his life, retarded the progress of optical discovery. Dollond subsequently proved that by combining two different kinds of glass, the colours can be extinguished, still leaving a residue of refraction, and he employed this residue in the construction of achromatic lenses—lenses yielding no colour—which Newton thought an impossibility. By setting a water-prism—water contained in a wedge-shaped vessel with glass sides (B, fig. 8)—in opposition to a wedge of glass (to the right of B), this point can be illustrated before you. We have first of all the position (dotted) of the unrefracted beam marked upon the screen; then we produce the narrow water-spectrum (W); finally, by introducing a flint-glass prism, we refract the beam back, until the colour disappears (at A). The image of the slit is now white; but though the dispersion is abolished, there remains a very sensible amount of refraction.
This is the place to illustrate another point bearing upon the instrumental means employed in these lectures. Bodies differ widely from each other as to their powers of refraction and dispersion. Note the position of the water-spectrum upon the screen. Altering in no particular the wedge-shaped vessel, but simply substituting for the water the transparent bisulphide of carbon, you notice how much higher the beam is thrown, and how much richer is the display of colour. To augment the size of our spectrum we here employ (at L) a slit, instead of a circular aperture.[6]
Fig. 9.
The synthesis of white light may be effected in three ways, all of which are worthy of attention: Here, in the first instance, we have a rich spectrum produced by the decomposition of the beam (from L, fig. 9). One face of the prism (P) is protected by a diaphragm (not shown in the figure), with a longitudinal slit, through which the beam passes into the prism. It emerges decomposed at the other side. I permit the colours to pass through a cylindrical lens (C), which so squeezes them together as to produce upon the screen a sharply defined rectangular image of the longitudinal slit. In that image the colours are reblended, and it is perfectly white. Between the prism and the cylindrical lens may be seen the colours, tracking themselves through the dust of the room. Cutting off the more refrangible fringe by a card, the rectangle is seen red: cutting off the less refrangible fringe, the rectangle is seen blue. By means of a thin glass prism (W), I deflect one portion of the colours, and leave the residual portion. On the screen are now two coloured rectangles produced in this way. These are complementary colours—colours which, by their union, produce white. Note, that by judicious management, one of these colours is rendered yellow, and the other blue. I withdraw the thin prism; yellow and blue immediately commingle, and we have white as the result of their union. On our way, then, we remove the fallacy, first exposed by Wünsch, and afterwards independently by Helmholtz, that the mixture of blue and yellow lights produces green.
Restoring the circular aperture, we obtain once more a spectrum like that of Newton. By means of a lens, we can gather up these colours, and build them together, not to an image of the aperture, but to an image of the carbon-points themselves.
Finally, by means of a rotating disk, on which are spread in sectors the colours of the spectrum, we blend together the prismatic colours in the eye itself, and thus produce the impression of whiteness.
Having unravelled the interwoven constituents of white light, we have next to inquire, What part the constitution so revealed enables this agent to play in Nature? To it we owe all the phenomena of colour, and yet not to it alone; for there must be a certain relationship between the ultimate particles of natural bodies and white light, to enable them to extract from it the luxury of colour. But the function of natural bodies is here selective, not creative. There is no colour generated by any natural body whatever. Natural bodies have showered upon them, in the white light of the sun, the sum total of all possible colours; and their action is limited to the sifting of that total—the appropriating or absorbing of some of its constituents, and the rejecting of others.