Sound. John Tyndall
Чтение книги онлайн.
Читать онлайн книгу Sound - John Tyndall страница 6
“Experiments and observation lead to the conclusion that these anomalies in the penetration and direction of sound from fog-signals are to be attributed mainly to the want of uniformity in the surrounding atmosphere, and that snow, rain, and fog, and the direction of the wind, have much less influence than has been generally supposed.”
The Report of General Duane is marked throughout by fidelity to facts, rare sagacity, and soberness of speculation. The last three of the paragraphs just quoted exhibit, in my opinion, the only approach to a true explanation of the phenomena which the Washington Report reveals. At this point, however, the eminent Chairman of the Lighthouse Board strikes in with the following criticism:
“In the foregoing I differ entirely in opinion from General Duane as to the cause of extinction of powerful sounds being due to the unequal density of the atmosphere. The velocity of sound is not at all affected by barometric pressure; but if the difference in pressure is caused by a difference in heat, or by the expansive power of vapor mingled with the air, a slight degree of obstruction of sound may be observed. But this effect we think is entirely too minute to produce the results noted by General Duane and Dr. Tyndall, while we shall find in the action of currents above and below a true and efficient cause.”
I have already cited the remarkable observation of General Duane, that with a snowstorm from the northeast blowing against the sound, the signal at Cape Elizabeth is always heard at Portland, a distance of nine miles. The observations at the South Foreland, where the sound has-been proved to reach a distance of more than twelve miles against the wind, backed by decisive experiments, reduce to certainty the surmises of General Duane. It has, for example, been proved that a couple of gas-flames placed in a chamber can, in a minute or two, render its air so non-homogeneous as to cut a sound practically off; while the same sound passes without sensible impediment through showers of paper-scraps, seeds, bran, raindrops, and through fumes and fogs of the densest description. The sound also passes through thick layers of calico, silk, serge, flannel, baize, close felt, and through pads of cotton-net impervious to the strongest light.
As long, indeed, as the air on which snow, hail, rain or fog is suspended is homogeneous, so long will sound pass through the air, sensibly heedless of the suspended matter.5 This point is illustrated upon a large scale by my own observations on the Mer de Glace, and by those of General Duane, at Portland, which prove the snow-laden air from the northeast to be a highly homogeneous medium. Prof. Henry thus accounts for the fact that the northeast snow-wind renders the sound of Cape Elizabeth audible at Portland: In the higher regions of the atmosphere he places an ideal wind, blowing in a direction opposed to the real one, which always accompanies the latter, and which more than neutralizes its action. In speculating thus he bases himself on the reasoning of Prof. Stokes, according to which a sound-wave moving against the wind is tilted upward. The upper, and opposing wind, is invented for the purpose of tilting again the already lifted sound-wave downward. Prof. Henry does not explain how the sound-wave recrosses the hostile lower current, nor does he give any definite notion of the conditions under which it can be shown that it will reach the observer.
This, so far as I know, is the only theoretic gleam cast by the Washington Report on the conflicting results which have hitherto rendered experiments on fog-signals so bewildering. I fear it is an ignis fatuus, instead of a safe guiding light. Prof. Henry, however, boldly applies the hypothesis in a variety of instances. But he dwells with particular emphasis upon a case of non-reciprocity which he considers absolutely fatal to my views regarding the flocculence of the atmosphere. The observation was made on board the steamer “City of Richmond,” during a thick fog in a night of 1872. “The vessel was approaching Whitehead from the southwestward, when, at a distance of about six miles from the station, the fog-signal, which is a 10-inch steam-whistle, was distinctly perceived, and continued to be heard with increasing intensity of sound until within about three miles, when the sound suddenly ceased to be heard, and was not perceived again until the vessel approached within a quarter of a mile of the station, although from conclusive evidence, furnished by the keeper, it was shown that the signal had been sounding during the whole time.”
But while the 10-inch shore-signal thus failed to make itself heard at sea, a 6-inch whistle on board the steamer made itself heard on shore. Prof. Henry thus turns this fact against me. “It is evident,” he writes, “that this result could not be due to any mottled condition or want of acoustic transparency in the atmosphere, since this would absorb the sound equally in both directions.” Had the observation been made in a still atmosphere, this argument would, at one time, have had great force. But the atmosphere was not still, and a sufficient reason for the observed non-reciprocity is to be found in the recorded fact that the wind was blowing against the shore-signal, and in favor of the ship-signal.
But the argument of Prof. Henry, on which he places his main reliance, would be untenable, even had the air been still. By the very aërial reflection which he practically ignores, reciprocity may be destroyed in a calm atmosphere. In proof of this assertion I would refer him to a short paper on “Acoustic Reversibility,” printed at the end of this volume.6 The most remarkable case of non-reciprocity on record, and which, prior to the demonstration of the existence and power of acoustic clouds, remained an insoluble enigma, is there shown to be capable of satisfactory solution. These clouds explain perfectly the “abnormal phenomena” of Prof. Henry. Aware of their existence, the falling off and subsequent recovery of a signal-sound, as noticed by him and General Duane, is no more a mystery than the interception of the solar light by a common cloud, and its restoration after the cloud has moved or melted away.
The clew to all the difficulties and anomalies of this question is to be found in the aërial echoes, the significance of which has been overlooked by General Duane, and misinterpreted by Prof. Henry. And here a word might be said with regard to the injurious influence still exercised by authority in science. The affirmations of the highest authorities, that from clear air no sensible echo ever comes, were so distinct that my mind for a time refused to entertain the idea. Authority caused me for weeks to depart from the truth, and to seek counsel among delusions. On the day our observations at the South Foreland began I heard the echoes. They perplexed me. I heard them again and again, and listened to the explanations offered by some ingenious persons at the Foreland. They were an “ocean-echo”: this is the very phraseology now used by Prof. Henry. They were echoes “from the crests and slopes of the waves”: these are the words of the hypothesis which he now espouses. Through a portion of the month of May, through the whole of June, and through nearly the whole of July, 1873, I was occupied with these echoes; one of the phases of thought then passed through, one of the solutions then weighed in the balance and found wanting, being identical with that which Prof. Henry now offers for acceptation.
But though it thus deflected me from the proper track, shall I say that authority in science is injurious? Not without some qualification. It is not only injurious, but deadly, when it cows the intellect into fear of questioning it. But the authority which so merits our respect as to compel us to test and overthrow all its supports, before accepting a conclusion opposed to it, is not wholly noxious. On the contrary, the disciplines it imposes may be in the highest degree salutary, though they may end, as in the present case, in the ruin of authority. The truth thus established is rendered firmer by our struggles to reach it. I groped day after day, carrying this problem of aërial echoes in my mind; to the weariness, I fear, of some of my colleagues who did not know my object. The ships and boats afloat, the “slopes and crests of the waves,” the visible clouds, the cliffs, the adjacent lighthouses, the objects landward, were all in turn taken into account, and all in turn rejected.
With regard to the particular notion which now finds favor with Prof. Henry, it suggests the thought that his observations, notwithstanding their apparent variety and extent, were really limited as regards the weather. For did they, like ours, embrace weather of all kinds, it is not likely that he would have ascribed to the sea-waves an action which often reaches its maximum intensity when waves are entirely absent.