Essential Science Fiction Novels - Volume 3. Stanley G. Weinbaum

Чтение книги онлайн.

Читать онлайн книгу Essential Science Fiction Novels - Volume 3 - Stanley G. Weinbaum страница 37

Essential Science Fiction Novels - Volume 3 - Stanley G. Weinbaum Essential Science Fiction Novels

Скачать книгу

style="font-size:15px;">      "A speed of fifty miles an hour."

      "I have seen the Nautilus manoeuvre before the Abraham Lincoln, and I have my own ideas as to its speed. But this is not enough. We must see where we go. We must be able to direct it to the right, to the left, above, below. How do you get to the great depths, where you find an increasing resistance, which is rated by hundreds of atmospheres? How do you return to the surface of the ocean? And how do you maintain yourselves in the requisite medium? Am I asking too much?"

      "Not at all, Professor," replied the Captain, with some hesitation; "since you may never leave this submarine boat. Come into the saloon, it is our usual study, and there you will learn all you want to know about the Nautilus."

      XII

      Some Figures

      A moment after we were seated on a divan in the saloon smoking. The Captain showed me a sketch that gave the plan, section, and elevation of the Nautilus. Then he began his description in these words:

      "Here, M. Aronnax, are the several dimensions of the boat you are in. It is an elongated cylinder with conical ends. It is very like a cigar in shape, a shape already adopted in London in several constructions of the same sort. The length of this cylinder, from stem to stern, is exactly 232 feet, and its maximum breadth is twenty-six feet. It is not built quite like your long-voyage steamers, but its lines are sufficiently long, and its curves prolonged enough, to allow the water to slide off easily, and oppose no obstacle to its passage. These two dimensions enable you to obtain by a simple calculation the surface and cubic contents of the Nautilus. Its area measures 6,032 feet; and its contents about 1,500 cubic yards; that is to say, when completely immersed it displaces 50,000 feet of water, or weighs 1,500 tons.

      "When I made the plans for this submarine vessel, I meant that nine-tenths should be submerged: consequently it ought only to displace nine-tenths of its bulk, that is to say, only to weigh that number of tons. I ought not, therefore, to have exceeded that weight, constructing it on the aforesaid dimensions.

      "The Nautilus is composed of two hulls, one inside, the other outside, joined by T-shaped irons, which render it very strong. Indeed, owing to this cellular arrangement it resists like a block, as if it were solid. Its sides cannot yield; it coheres spontaneously, and not by the closeness of its rivets; and its perfect union of the materials enables it to defy the roughest seas.

      "These two hulls are composed of steel plates, whose density is from .7 to .8 that of water. The first is not less than two inches and a half thick and weighs 394 tons. The second envelope, the keel, twenty inches high and ten thick, weighs only sixty-two tons. The engine, the ballast, the several accessories and apparatus appendages, the partitions and bulkheads, weigh 961.62 tons. Do you follow all this?"

      "I do."

      "Then, when the Nautilus is afloat under these circumstances, one-tenth is out of the water. Now, if I have made reservoirs of a size equal to this tenth, or capable of holding 150 tons, and if I fill them with water, the boat, weighing then 1,507 tons, will be completely immersed. That would happen, Professor. These reservoirs are in the lower part of the Nautilus. I turn on taps and they fill, and the vessel sinks that had just been level with the surface."

      "Well, Captain, but now we come to the real difficulty. I can understand your rising to the surface; but, diving below the surface, does not your submarine contrivance encounter a pressure, and consequently undergo an upward thrust of one atmosphere for every thirty feet of water, just about fifteen pounds per square inch?"

      "Just so, sir."

      "Then, unless you quite fill the Nautilus, I do not see how you can draw it down to those depths."

      "Professor, you must not confound statics with dynamics or you will be exposed to grave errors. There is very little labour spent in attaining the lower regions of the ocean, for all bodies have a tendency to sink. When I wanted to find out the necessary increase of weight required to sink the Nautilus, I had only to calculate the reduction of volume that sea-water acquires according to the depth."

      "That is evident."

      "Now, if water is not absolutely incompressible, it is at least capable of very slight compression. Indeed, after the most recent calculations this reduction is only .000436 of an atmosphere for each thirty feet of depth. If we want to sink 3,000 feet, I should keep account of the reduction of bulk under a pressure equal to that of a column of water of a thousand feet. The calculation is easily verified. Now, I have supplementary reservoirs capable of holding a hundred tons. Therefore I can sink to a considerable depth. When I wish to rise to the level of the sea, I only let off the water, and empty all the reservoirs if I want the Nautilus to emerge from the tenth part of her total capacity."

      I had nothing to object to these reasonings.

      "I admit your calculations, Captain," I replied; "I should be wrong to dispute them since daily experience confirms them; but I foresee a real difficulty in the way."

      "What, sir?"

      "When you are about 1,000 feet deep, the walls of the Nautilus bear a pressure of 100 atmospheres. If, then, just now you were to empty the supplementary reservoirs, to lighten the vessel, and to go up to the surface, the pumps must overcome the pressure of 100 atmospheres, which is 1,500 lbs. per square inch. From that a power——"

      "That electricity alone can give," said the Captain, hastily. "I repeat, sir, that the dynamic power of my engines is almost infinite. The pumps of the Nautilus have an enormous power, as you must have observed when their jets of water burst like a torrent upon the Abraham Lincoln. Besides, I use subsidiary reservoirs only to attain a mean depth of 750 to 1,000 fathoms, and that with a view of managing my machines. Also, when I have a mind to visit the depths of the ocean five or six mlles below the surface, I make use of slower but not less infallible means."

      "What are they, Captain?"

      "That involves my telling you how the Nautilus is worked."

      "I am impatient to learn."

      "To steer this boat to starboard or port, to turn, in a word, following a horizontal plan, I use an ordinary rudder fixed on the back of the stern-post, and with one wheel and some tackle to steer by. But I can also make the Nautilus rise and sink, and sink and rise, by a vertical movement by means of two inclined planes fastened to its sides, opposite the centre of flotation, planes that move in every direction, and that are worked by powerful levers from the interior. If the planes are kept parallel with the boat, it moves horizontally. If slanted, the Nautilus, according to this inclination, and under the influence of the screw, either sinks diagonally or rises diagonally as it suits me. And even if I wish to rise more quickly to the surface, I ship the screw, and the pressure of the water causes the Nautilus to rise vertically like a balloon filled with hydrogen."

      "Bravo, Captain! But how can the steersman follow the route in the middle of the waters?"

      "The steersman is placed in a glazed box, that is raised about the hull of the Nautilus, and furnished with lenses."

      "Are these lenses capable of resisting such pressure?"

      "Perfectly. Glass, which breaks at a blow, is, nevertheless, capable of offering considerable resistance. During some experiments of fishing by electric light in 1864 in the Northern Seas, we saw plates less than a third of an inch thick resist a pressure of sixteen atmospheres. Now, the glass that I use is not less than thirty times thicker."

      "Granted.

Скачать книгу