Discourses: Biological & Geological. Thomas Henry Huxley
Чтение книги онлайн.
Читать онлайн книгу Discourses: Biological & Geological - Thomas Henry Huxley страница 4
At the same time, it became desirable to ascertain and to indicate the nature of the sea-bottom, since this circumstance greatly affects its goodness as holding ground for anchors. Some ingenious tar, whose name deserves a better fate than the oblivion into which it has fallen, attained this object by "arming" the bottom of the lead with a lump of grease, to which more or less of the sand or mud, or broken shells, as the case might be, adhered, and was brought to the surface. But, however well adapted such an apparatus might be for rough nautical purposes, scientific accuracy could not be expected from the armed lead, and to remedy its defects (especially when applied to sounding in great depths) Lieut. Brooke, of the American Navy, some years ago invented a most ingenious machine, by which a considerable portion of the superficial layer of the sea-bottom can be scooped out and brought up from any depth to which the lead descends. In 1853, Lieut. Brooke obtained mud from the bottom of the North Atlantic, between Newfoundland and the Azores, at a depth of more than 10,000 feet, or two miles, by the help of this sounding apparatus. The specimens were sent for examination to Ehrenberg of Berlin, and to Bailey of West Point, and those able microscopists found that this deep-sea mud was almost entirely composed of the skeletons of living organisms—the greater proportion of these being just like the Globigerinoe already known to occur in the chalk.
Thus far, the work had been carried on simply in the interests of science, but Lieut. Brooke's method of sounding acquired a high commercial value, when the enterprise of laying down the telegraph-cable between this country and the United States was undertaken. For it became a matter of immense importance to know, not only the depth of the sea over the whole line along which the cable was to be laid, but the exact nature of the bottom, so as to guard against chances of cutting or fraying the strands of that costly rope. The Admiralty consequently ordered Captain Dayman, an old friend and shipmate of mine, to ascertain the depth over the whole line of the cable, and to bring back specimens of the bottom. In former days, such a command as this might have sounded very much like one of the impossible things which the young Prince in the Fairy Tales is ordered to do before he can obtain the hand of the Princess. However, in the months of June and July, 1857, my friend performed the task assigned to him with great expedition and precision, without, so far as I know, having met with any reward of that kind. The specimens or Atlantic mud which he procured were sent to me to be examined and reported upon.[1]
[Footnote 1: See Appendix to Captain Dayman's Deep-sea Soundings in the North Atlantic Ocean between Ireland and Newfoundland, made in H.M.S. "Cyclops." Published by order of the Lords Commissioners of the Admiralty, 1858. They have since formed the subject of an elaborate Memoir by Messrs. Parker and Jones, published in the Philosophical Transactions for 1865.]
The result of all these operations is, that we know the contours and the nature of the surface-soil covered by the North Atlantic for a distance of 1,700 miles from east to west, as well as we know that of any part of the dry land. It is a prodigious plain—one of the widest and most even plains in the world. If the sea were drained off, you might drive a waggon all the way from Valentia, on the west coast of Ireland, to Trinity Bay, in Newfoundland. And, except upon one sharp incline about 200 miles from Valentia, I am not quite sure that it would even be necessary to put the skid on, so gentle are the ascents and descents upon that long route. From Valentia the road would lie down-hill for about 200 miles to the point at which the bottom is now covered by 1,700 fathoms of sea-water. Then would come the central plain, more than a thousand miles wide, the inequalities of the surface of which would be hardly perceptible, though the depth of water upon it now varies from 10,000 to 15,000 feet; and there are places in which Mont Blanc might be sunk without showing its peak above water. Beyond this, the ascent on the American side commences, and gradually leads, for about 300 miles, to the Newfoundland shore.
Almost the whole of the bottom of this central plain (which extends for many hundred miles in a north and south direction) is covered by a fine mud, which, when brought to the surface, dries into a greyish white friable substance. You can write with this on a blackboard, if you are so inclined; and, to the eye, it is quite like very soft, grayish chalk. Examined chemically, it proves to be composed almost wholly of carbonate of lime; and if you make a section of it, in the same way as that of the piece of chalk was made, and view it with the microscope, it presents innumerable Globigerinoe embedded in a granular matrix. Thus this deep- sea mud is substantially chalk. I say substantially, because there are a good many minor differences; but as these have no bearing on the question immediately before us—which is the nature of the Globigerinoe of the chalk—it is unnecessary to speak of them.
Globigerinoe of every size, from the smallest to the largest, are associated together in the Atlantic mud, and the chambers of many are filled by a soft animal matter. This soft substance is, in fact, the remains of the creature to which the Globigerinoe shell, or rather skeleton, owes its existence—and which is an animal of the simplest imaginable description. It is, in fact, a mere particle of living jelly, without defined parts of any kind—without a mouth, nerves, muscles, or distinct organs, and only manifesting its vitality to ordinary observation by thrusting out and retracting from all parts of its surface, long filamentous processes, which serve for arms and legs. Yet this amorphous particle, devoid of everything which, in the higher animals, we call organs, is capable of feeding, growing, and multiplying; of separating from the ocean the small proportion of carbonate of lime which is dissolved in sea-water; and of building up that substance into a skeleton for itself, according to a pattern which can be imitated by no other known agency.
The notion that animals can live and flourish in the sea, at the vast depths from which apparently living Globigerinoe; have been brought up, does not agree very well with our usual conceptions respecting the conditions of animal life; and it is not so absolutely impossible as it might at first sight appear to be, that the Globigcrinoe of the Atlantic sea-bottom do not live and die where they are found.
As I have mentioned, the soundings from the great Atlantic plain are almost entirely made up of Globigerinoe, with the granules which have been mentioned, and some few other calcareous shells; but a small percentage of the chalky mud—perhaps at most some five per cent. of it—is of a different nature, and consists of shells and skeletons composed of silex, or pure flint. These silicious bodies belong partly to the lowly vegetable organisms which are called Diatomaceoe, and partly to the minute, and extremely simple, animals, termed Radiolaria. It is quite certain that these creatures do not live at the bottom of the ocean, but at its surface—where they may be obtained in prodigious numbers by the use of a properly constructed net. Hence it follows that these silicious organisms, though they are not heavier than the lightest dust, must have fallen, in some cases, through fifteen thousand feet of water, before they reached their final resting-place on the ocean floor. And considering how large a surface these bodies expose in proportion to their weight, it is probable that they occupy a great length of time in making their burial journey from the surface of the Atlantic to the bottom.
But if the Radiolaria and Diatoms are thus rained upon the bottom of the sea, from the superficial layer of its waters in which they pass their lives, it is obviously possible that the Globigerinoe may be similarly derived; and if they were so, it would be much more easy to understand how they obtain their supply of food than it is at present. Nevertheless, the positive and negative evidence all points the other way. The skeletons of the full-grown, deep-sea Globigerinoe are so remarkably solid and heavy in proportion to their surface as to seem little fitted for floating; and, as a matter of fact,