Системы аэромеханического контроля критических состояний. В. Б. Живетин
Чтение книги онлайн.
Читать онлайн книгу Системы аэромеханического контроля критических состояний - В. Б. Живетин страница 27

Cу(z,α) = Cу(αф) + ΔCу(z,ωх,β).
При этом
Изменение критического угла атаки самолета при полете с ωx ≠ 0 приведено на рис. 1.18. При этом зависимость Cу(α) преобразуется в Cу(α,ωх), и тогда αкр = αкр(ωх); Cу кр = Cу кр(α,ωх), когда .
Рис. 1.18
Эти различия обусловлены методами измерения угла атаки, т. е. методами съема информации. При этом на рис. 1.18 представлены зависимости Cу от угла атаки αф, измеренного флюгариком в невозмущенном потоке воздуха.
Пусть самолет совершает полет при α < αкр и ωx = 0. Угол атаки α измеряется флюгариком αф в невозмущенном потоке воздуха αнв = αф. Рассмотрим сечение крыла на расстоянии z от оси симметрии. В рассматриваемой ситуации Су = Су(z) = Су(α(z)).
Если мы хотим строить алгоритм вычисления , то должны воспользоваться зависимостью:
Таким образом, αкр, измеренное флюгерным датчиком, – это некоторая функция ωх, а в общем случае и β; в то же время критический местный угол в сечении z крыла и соответственно Сукр не изменяются.
Рассмотрим особенности αкр измеренного флюгариком, т. е. αф. В стационарном плоском режиме полета достаточно гарантировать αф ≤ αкр, чтобы обеспечить безопасность ЛА. В случае, когда рассматривается стационарное пространственное движение при β ≠ 0, необходимо при ограничении αф учитывать αкр = αкр(β). В случае, когда имеет место переход от дозвуковых к сверхзвуковым режимам полета при β ≠ 0, необходимо учитывать М, и тогда αкр = αкр(β,M).
В случае, когда имеет место ωх, тогда αкр = αкр(β,M,ωx). При пространственном маневре αкр = αкр(β,M,). Таким образом, предлагается в качестве координаты контроля и ограничения использовать не αф, а Cу(z) сечения крыла. Информация о Cу(z) – фундаментальная характеристика области Ωдоп особенно в динамическом режиме, когда необходимо отслеживать Cу max или Cу кр. В этом режиме измерить α(z) флюгариком невозможно, так как флюгарик неадекватно отображает значение α(z).
Влияние угла скольжения β на величину критического угла атаки представлено на рис. 1.19.
Изменение поля сил аэродинамического давления, обусловленное β ≠ 0, связано с изменением местного угла атаки α(z,β), когда .
При этом критический угол атаки, измеренный флюгариком, не зависит от β так же, как и ранее от ωх. Влияние числа Маха на величину Cу кр = Cу св, где Cу св – подъемная сила сваливания, представлена в виде графика на рис. 1.20.
Рис. 1.19
Рис. 1.20
Области допустимых и критических состояний ПСАД, построенных из условий сваливания для различных