Industrial Data Analytics for Diagnosis and Prognosis. Yong Chen

Чтение книги онлайн.

Читать онлайн книгу Industrial Data Analytics for Diagnosis and Prognosis - Yong Chen страница 6

Industrial Data Analytics for Diagnosis and Prognosis - Yong Chen

Скачать книгу

240

      259  241

      260  242

      261  243

      262  244

      263  245

      264  246

      265  247

      266  248

      267  249

      268  250

      269  251

      270  252

      271  253

      272  254

      273  255

      274  256

      275  257

      276  258

      277  259

      278  260

      279  261

      280  262

      281  263

      282  264

      283  265

      284 266

      285  267

      286  268

      287  269

      288  270

      289  271

      290  272

      291  273

      292  274

      293  275

      294  276

      295  277

      296  278

      297  279

      298  280

      299  281

      300  282

      301  283

      302  284

      303  285

      304  286

      305  287

      306 288

      307  289

      308  290

      309  291

      310  292

      311  293

      312  294

      313  295

      314  296

      315  297

      316  298

      317  299

      318  300

      319  301

      320  302

      321  303

      322  304

      323  305

      324 306

      325 307

      326 308

      327  309

      328  310

      329  311

      330  312

      331  313

      332 314

      333  315

      334 316

      335 317

      336 318

      337 319

      338 320

      339 321

      340 322

      341 323

      342 324

      343 325

      344 326

      345  327

      346 328

      347 329

      348 330

      Today, we are facing a data rich world that is changing faster than ever before. The ubiquitous availability of data provides great opportunities for industrial enterprises to improve their process quality and productivity. Industrial data analytics is the process of collecting, exploring, and analyzing data generated from industrial operations and throughout the product life cycle in order to gain insights and improve decision-making. This book describes industrial data analytics approaches with an emphasis on diagnosis and prognosis of industrial processes and systems.

      A large number of textbooks/research monographs exist on diagnosis and prognosis in the engineering field. Most of these engineering books focus on model-based diagnosis and prognosis problems in dynamic systems. The model-based approaches adopt a dynamic model for the system, often in the form of a state space model, as the basis for diagnosis and prognosis. Different from these existing books, this book focuses on the concept of random effects and its applications in system

Скачать книгу