Electromagnetic Methods in Geophysics. Fabio Giannino

Чтение книги онлайн.

Читать онлайн книгу Electromagnetic Methods in Geophysics - Fabio Giannino страница 20

Автор:
Жанр:
Серия:
Издательство:
Electromagnetic Methods in Geophysics - Fabio Giannino

Скачать книгу

      1 ASTM D6639–01 (2008). Standard Guide for Using the Frequency Domain Electromagnetic Method for Subsurface Investigations.

      2 Giannino, F. (2014). Metodi Elettromagnetici in Geofisica applicata. Acquisizione, analisi e interpretazione dei dati FDEM, TDEM e AEM in ambito geologico, ambientale e ingegneristico. Dario Flaccovio Editore.

      3 McNeill, J.D. (1980). Electromagnetic terrain conductivity measurements at low induction number. Technical note TN‐6. Geonics Ltd. (www.geonics.com).

      4 McNeill, J.D. (1980). Applications of transient electromagnetic techniques. Technical note TN‐7. Geonics Ltd. (www.geonics.com).

      5 Nabighian M.N. (1980). Electromagnetic Methods in Applied Geophysics. Investigation in Geophysics No 2. Volume 2, Application, Parts A and B, ISBN 978‐0‐931830‐46‐4 (Vol.1) 978‐0‐931830‐51‐8. Society of Exploration Geophysics.

      6 Parasnis, D.S. (1979). Principles of Applied Geophysics. Third edition, Chapman and Hall.

      7 Sharma, P.V. (1997). Environmental and engineering geophysics. Cambridge University Press.

      2.3.1. TDEM (Time Domain Electromagnetic)

      It dates back in the 70s when the electromagnetic technique known as Time Domain Electro Magnetic Method (acronym TDEM) has been developed, almost at the same time, by the Russian, Canadian, and Australian technical and scientific community, for mineral search purposes.

      Later in the 80s, TDEM found a wider application for hydrogeological purposes, and recently it has been applied for geotechnical (stratigraphic interpretation of the subsoil) and environmental studies (pollutants search, UXO search) (A. Menghini et al., 2010).

      The aim of a TDEM sounding is the reconstruction of a 1D model of the subsoil to detect layers having the same characteristics in terms of electrical resistivity. The depth of investigation of a TDEM survey depends upon the characteristics of the instrumentation employed, the stratigraphic and geological conditions of the medium to be investigated and the background and or other sources of noise.

      The main advantage of this technique with respect to other EM techniques (for example respect to the FDEM method), is that the TDEM method employs transient EM field: this means that the measurements of the secondary EM field is done at the receiving coil, when the transmitting coil is switched off for a very short time, called time off. During the time off, the secondary is sampled in wider “time windows,” corresponding to deeper portion of the subsoil.

      The above‐described setting put the conditions to avoid (as it happens instead in the FDEM methods) to measure a very small quantity (the secondary magnetic field) in presence of another, much larger, one: the primary magnetic field, produced by the transmitting coil (P.V. Sharma, 1997; Kearey et Alii, 2002; J.D. Mc Neill, 1980). Hence, the signal measured at the receiver coil, is likely to be only due to the “contribution” given by the secondary field associated to the soil material, and not to the signal directly coming from the transmitting coil.

Schematic illustration of typical TDEM acquisition model. Photo depicts a Prototype acquisition TDEM system. All the essential parts of the system are shown. Photo depicts prototype acquisition ProTEM manufactured by Geonics Ltd.

      In the acquisition scheme depicted in Figure 2.3.1 an acquisition system defined as Central Loop is illustrated, where the receiving loop is concentrically positioned with respect to the transmitting loop. In contrast, in the Loop‐Loop or Slingram mode, the transmitter and receiver are coaxial but not concentric: the receiver loop is external with respect to the transmitter loop.

      In Figure 2.3.6 b, it is highlighted how in the moment in which the electric current is switched off (turn off), as illustrated in the Faraday’s law, a primary magnetic field is produced, and this tends to become null within a very little time (a few milliseconds). This magnetic field interacting with the subsoil generates induced currents in it, which propagates deeper in the subsoil as time passes (

Скачать книгу