SAP Data Warehouse Cloud. Klaus-Peter Sauer

Чтение книги онлайн.

Читать онлайн книгу SAP Data Warehouse Cloud - Klaus-Peter Sauer страница 4

SAP Data Warehouse Cloud - Klaus-Peter Sauer

Скачать книгу

      Der Name »Data Warehouse Cloud« legt zwar nahe, dass sich die Daten ebenfalls in der Cloud befinden, das ist aber nicht zwingend notwendig. Über einen virtuellen Zugriff (Remote Access) können Daten aus sehr vielen Quellen genutzt werden, ohne dass sie – wie früher üblich – erst in das System kopiert werden müssen. Auf diese Weise können Sie ein »virtuelles« Data Warehouse aufbauen. In Data Warehouse Cloud wird dafür der Begriff Remote-Tabellen verwendet. Welche Konnektoren einen virtuellen Zugriff auf Remote-Tabellen erlauben, wird in Abschnitt 3.4.5 im Einzelnen erklärt.

      Wenn Sie die Daten zu einem späteren Zeitpunkt doch persistieren möchten, können Sie komfortabel wählen, ob Sie sie in Echtzeit replizieren oder als Snapshot bzw. persistierten View ablegen möchten – automatisiert und regelmäßig einplanbar. Wichtig zu wissen, ist, dass Sie dabei das Datenmodell nicht verändern müssen. Die Umstellung von Remote-Zugriff auf Echtzeitreplikation bzw. Snapshot nehmen Sie direkt an der Remote-Tabelle vor. Alle darauf aufbauenden Modelle bleiben davon unberührt.

      Isolierte Arbeitsbereiche

      Alle Daten werden in virtuellen und isolierten Arbeitsbereichen, den sogenannten Spaces, abgelegt oder verknüpft. Sie können beliebige Arbeitsbereiche für Projekte, einmalige Aufgaben, Fachthemen oder -abteilungen anlegen, die von der IT oder auch der Fachabteilung verwaltet werden. Spaces ermöglichen damit den Spagat zwischen Agilität und IT-Governance.

      Die IT-Abteilung gibt Fachbereichen Zugriff auf bestehende Datenbestände, die zentral verwaltet und bereits konsolidiert bzw. harmonisiert sind, ohne die Daten erneut zu kopieren. Dies können beispielsweise Finanz- und Controlling-Daten oder auch zentrale Stammdaten sein.

      Die Fachabteilung wiederum kann diese zentralen Daten im eigenen Space mit ihren lokalen Daten anreichern. Indem sie die Daten kombiniert und eigene KPIs erstellt, lassen sich neue Erkenntnisse gewinnen.

      Self-Service-Modellierung

      Anwender aus Fachabteilungen sollen in der Lage sein, eigene Modelle, KPIs und Analysen zu erstellen. Dabei wird der Zugriff auf bestehende Daten gewährt, die von der IT- oder anderen Fachabteilungen zur Verfügung gestellt werden. Unternehmensdaten können so mit lokalen Daten flexibel angereichert werden, um neue Modelle und Kennzahlen zu entwickeln.

      Diese neuen Modelle lassen sich mit anderen Fachanwendern teilen, um die Zusammenarbeit zwischen den Abteilungen zu stärken, ohne die Daten ständig kopieren zu müssen. Dadurch werden dem Endbenutzer Informationen in einem digitalen Format zugänglich gemacht, über das sich Daten ohne Hilfe von außen sammeln und analysieren lassen. Dieser Prozess wird auch als Datendemokratisierung bezeichnet.

      Semantische Schicht

      Die semantische Schicht im Business Builder bietet die Möglichkeit der Abstraktion von oft komplexen und sehr technischen Datenmodellen in Objekte mit normaler Sprache. So erstellen Sie wiederverwendbare Objekte, anhand derer andere Anwender die Daten sofort verstehen. Sie können zudem die Beziehungen zwischen Elementen in Ihrem Datenmodell definieren und Ihre Datenfelder mit weiteren Geschäftsinformationen anreichern.

      Um die semantische Modellierung im Sinne einer Self-Service-Modellierung nutzen zu können, benötigen Sie einen guten Grundstock an Entitäten und analytischen Modellen, damit sich die Benutzer einfach an bestehenden Objekten bedienen können, um eigene Consumption-Modelle oder Perspektiven zu erstellen.

      Offenheit

      Die Offenheit der Lösung ist ein ganz zentraler Bestandteil des Konzepts und zeigt sich auf allen Ebenen: bei Werkzeugen, Daten und Schnittstellen.

      In Bezug auf die Datenintegration bedeutet dies Konnektivität sowohl zu klassischen On-Premises-Systemen als auch zu cloudbasierten Software-Lösungen, unabhängig davon, ob es sich dabei um SAP-Systeme handelt oder nicht. Eine gute Integration in eine bestehende SAP-Landschaft mit unterschiedlichen Lösungen wird vom Kunden ohnehin vorausgesetzt. Diesbezüglich deckt Data Warenhause Cloud bereits eine breite Palette von Quellsystemen ab.

      Reichen die ausgelieferten Quellsystemverbindungen nicht aus, können Sie beliebige externe Werkzeuge (z.B. SAP Data Services, SAP Data Intelligence, Informatica, SnapLogic, Adverity und andere) zur Datenintegration verwenden, sofern diese einen SQL-basierten HANA-Konnektor anbieten. Dabei werden die Daten in ein offenes SQL-Schema geschrieben, in dem Sie außerdem SQL-basiert Datenmodellierungen vornehmen und diese nahtlos in die weitere Modellierung mit Data Warehouse Cloud integrieren können. So kommen die in Unternehmen häufig vorhandenen SQL-Kenntnisse zum Einsatz.

      Gleichzeitig lassen sich über ein offenes SQL-Schema die Bibliotheken für maschinelles Lernen aus dem HANA-Cloud-Scriptserver nutzen, um Data-Science-Projekte auf den vorhandenen Datenbeständen durchzuführen.

      Für Analytics-Werkzeuge von Drittanbietern steht ebenfalls eine SQL-Schnittstelle zur Verfügung. Die weitere Roadmap sieht darüber hinaus Schnittstellen auf der Ebene von Spaces und der Datenmodellierung vor, über die Data-Warehouse-Cloud-Objekte von externen Werkzeugen erzeugt werden können.

      Design-Time versus Runtime

      Wie viele moderne Software-Umgebungen unterscheidet Data Warehouse Cloud zwei Phasen:

      1. Design-Time (Entwurf): Die Design-Time beschreibt das Objekt beim Entwurf, wie z.B. die Definition einer Tabelle. Beim Speichern

werden die Metadaten im lokalen Repository abgelegt. Um die Tabelle in anderen Modellen weiterzuverwenden oder mit Daten zu befüllen, muss sie schließlich als Runtime-Objekt in der Datenbank erzeugt werden.

      2. Runtime (Laufzeit): Nach der Implementierung

(Deployment) können Sie die Daten über das Laufzeitobjekt auswerten.

      Anwendungsfälle, Einsatzszenarien, Use Cases – die Verwendung von Software-Produkten lässt sich mit verschiedenen Begriffen beschreiben. Sehr oft hängt dieser vom individuellen Blickwinkel des Betrachters ab. Den Anwendungsfällen liegt eine systemorientierte Sichtweise zugrunde.

      Hybride Einsatzszenarien

      Der Begriff hybrid wird in der IT-Branche mit vielfältiger Bedeutung verwendet. In diesem Zusammenhang wird darunter die nahtlose Integration vorhandener Data-Warehouse-Systeme mit Data Warehouse Cloud verstanden. In Kapitel 5 erfahren Sie Details zu den Möglichkeiten hybrider Einsatzszenarien von Data Warehouse Cloud, insbesondere mit SAP BW, BW/4HANA und SQL-basierten Data Warehouses mit SAP HANA.

      Data Marts und applikationsübergreifendes Data Warehousing

      Die Lösung eignet sich sehr gut zum Aufbau von cloudbasierten Data Marts, also für Teile des gesamten Datenbestands. In den zuvor benannten Spaces werden neue Data Marts aufgebaut und die Daten bei Bedarf mit anderen geteilt – ebenfalls, ohne eine Datenkopie erzeugen zu müssen. Das können Daten für neue Projekte oder für Ihren Start in die Cloud sein. Diese Data Marts können auch zu einem Data Warehouse

Скачать книгу