Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis. James F. Epperson

Чтение книги онлайн.

Читать онлайн книгу Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis - James F. Epperson страница 13

Solutions Manual to Accompany An Introduction to Numerical Methods and Analysis - James F. Epperson

Скачать книгу

the two‐point boundary value problem problemusing a range of mesh sizes, starting with , and going as far as . Comment on your results.Solution: For larger values of , the approximate solution is erratic and wildly oscillatory. It isn't until about or so that the solution begins to settle down.

      7 Generalize the solution of the two‐point boundary value problem to the case where and . Apply this to the solution of the problemwhich has exact solutionSolve this for a range of values of the mesh. Do we get the expected accuracy?

      8 Consider the problem of determining the deflection of a thin beam, supported at both ends, due to a uniform load being placed along the beam. In one simple model, the deflection as a function of position along the beam satisfies the boundary value problemHere is a constant that depends on the material properties of the beam, is the length of the beam, and depends on the material properties of the beam as well as the size of the load placed on the beam. For a six‐foot‐long beam, with and , what is the maximum deflection of the beam? Use a fine enough grid that you can be confident of the accuracy of your results. Note that this problem is slightly more general than our example (2.28)‐(2.29); you will have to adapt our method to this more general case.Solution: See Figure 2.6.

      9 Repeat the above problem, except this time use a three‐foot‐long beam. How much does the maximum deflection change, and is it larger or smaller?

      10 Repeat the beam problem again, but this time use a 12‐foot‐long beam.

      11 Try to apply the ideas of this section to the solution of the nonlinear boundary value problem defined byFigure 2.6 Exact solution for Exercise 2.7.8.Write out the systems of equations for the specific case of . What goes wrong? Why can't we proceed with the approximate solution?Solution: The problem is that the system of equations that is produced by the discretization process is nonlinear, so our inherently linear algorithm won't work.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7RoOUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAD4cAVoAAxsl RxwCAAACAAAcAlAAEG5pY2hvbGFzd2VocmthbXAcAgUAFTk3ODExMTk2MDQ1MzJfY3ZyLnBkZjhC SU0EJQAAAAAAEM80xQcCs4DoQKAXprokci04QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3ByaW50 T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAAD3By aW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFByb29m U2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAAAQAA AABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAAABAA AAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJvb2wA AAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAAAABO Z3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAAAABS R0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwgIGRv dWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAAAABCbGQgVW50RiNSbHQAA

Скачать книгу