Magma Redox Geochemistry. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Magma Redox Geochemistry - Группа авторов страница 15

Magma Redox Geochemistry - Группа авторов

Скачать книгу

the Fe–S system, pyrite is not at the liquidus (pyrite does not melt), but as a conceptual exercise we can still relate its formation to the occurrence of the following fictitious half‐reactions in the solid phase involving sulfide and polysulfide anions:

      1.1.2. The Redox Potential in Solutions and the Ligand Role

      In redox reactions a potential difference drives the transfer electrons from an anode (negative electrode) to a cathode (positive electrode): oxidation occurs at the anode and reduction occurs at the cathode. Reactions are spontaneous in the direction of ΔG < 0, which is also the direction in which the potential (defined as Ecathode – Eanode) is positive. In a redox reaction the anode is then the half‐reaction written with electrons on the right and the cathode is the half‐reaction with electrons appearing on the left side.

      The electric work done by a spontaneous redox reaction, like in a galvanic cell (E > 0), is the (measurable) electromotive force of the reacting systems and equals the Gibbs free energy change (e.g. Ottonello, 1997) via the Nernst equation:

      The electrode potential values (E0) hold at standard conditions: by definition, standard conditions mean that any dissolved species have concentrations of 1 m, any gaseous species have partial pressures of 1 bar, and the system is 25°C. Standard potentials represent the case where no current flows and the electrode reaction is reversible. Measuring a voltage is an indication that the system is out of equilibrium. Nernstian processes are characterized by fast electron transfer and are rate‐limited by the diffusion of the electron‐active species into the electrolyte. The system then spontaneously approaches equilibrium because negative and positive charged species can flow in opposite directions. At equilibrium, the voltage drops to zero and the current stops, like in dead batteries. The magnitude of the cell potential, E0 = E0cathode – E0anode, may be viewed as the driving force for current flow in the circuit.

      The hydrogen‐electrode scale electric potential so defined, E (also indicated as Eh in aqueous solutions), is a measure of the oxidation state of a system at equilibrium relative to a hydrogen electrode. E is not a constant (for given T and P) but depends on the system composition via activities of ions entering a half redox reaction. When coupled to a compositional parameter of the system related to the activity of the ligand making up the solvent of interest, such as aH+ for aqueous solutions, E can be used to establish a kind of phase diagram that shows which species (dissolved ion species, gases, or solids) will predominate among a chosen set in the system of interest (a solution) for a given temperature.

      To easily understand all this, we can look at the reaction leading to the formation of liquid water:

      which is given by the sum of Reaction 1.7 (H+/H2 redox couple: the anode) and the following half‐reaction (the cathode):

      where a and f denote

Скачать книгу