Magma Redox Geochemistry. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Magma Redox Geochemistry - Группа авторов страница 41

Magma Redox Geochemistry - Группа авторов

Скачать книгу

those recovered from ridges. Additional work, particularly in forearc and back‐arc settings, support this observation by showing that fO2 becomes elevated in proportion to the rock’s subduction affinity (Benard et al., 2018; Birner et al., 2017; Brounce et al., 2014; Brounce et al., 2021; Brounce et al., 2015; Kelley & Cottrell, 2009; 2012; Parkinson & Arculus, 1999). This remains true for the back‐arc basin basalts erupted at pressures > 200 bar and through a comparable crustal column to normal MORB. Moreover, in both the ridge and arc settings, melts (lavas and tephras) and mantle (peridotites and pyroxenites) both record an offset in oxygen fugacity of similar magnitude between the two settings. While these observations are robust, the mechanism by which subduction generates more oxidized lavas and associated mantle lithologies remains a matter of debate and is beyond the scope of this contribution to review (e.g., Andreani et al., 2013; Benard et al., 2018; Canil & Fellows, 2017; Carmichael, 1991; Chin et al., 2018; Debret et al., 2014; Evans, this volume; Farner & Lee, 2017; Foden et al., 2018; Gaillard et al., 2015; Kelley & Cottrell, 2009; Lecuyer & Ricard, 1999; Lee et al., 2005; Mungall, 2002; Nebel et al., 2015; Parkinson & Arculus, 1999; Tang et al., 2018; Tollan & Hermann, 2019; Williams et al., 2004; Wood et al., 1990).

      3.4.1. Linking the fO2 of Volcanics and Mantle Lithologies

      Once melts become volatile saturated or begin to undergo assimilation‐fractional crystallization processes within the crust, the relationship between mantle source and magmatic fO2 may become more tenuous. Here we briefly review processes that may modify melt fO2 signal from source to surface: degassing and crystal fractionation within thick crust.

       Degassing.

Image described by caption.

      The much higher ratios of sulfur to water in undegassed OIB magmas lead to a larger magnitude of reduction as degassing proceeds in OIB settings compared to arc settings, because the reducing effects of degassing ~2000 ppm S are not as strongly offset by the slightly oxidizing effects of degassing H2O, as is the case for H2O‐rich arc magmas (Fig. 3.5, orange lines). The model predictions in Fig. 3.5 that link degassing to reduction

Скачать книгу