Hydrogeology. Kevin M. Hiscock

Чтение книги онлайн.

Читать онлайн книгу Hydrogeology - Kevin M. Hiscock страница 29

Hydrogeology - Kevin M. Hiscock

Скачать книгу

G. (1986) Hydrogeological Scheme of Central Italy. Sheet 1 (A. Hydrogeological Map). Memoir of the Geological Society of Italy XXXV, Geological Society of Italy, Rome.)

      After enumerating the lengths and courses of the several aqueducts, Frontinus enthuses: ‘with such an array of indispensable structures carrying so many waters, compare, if you will, the idle Pyramids or the useless, though famous, works of the Greeks!’ To protect the aqueducts from wilful pollution, a law was introduced such that: ‘No one shall with malice pollute the waters where they issue publicly. Should any one pollute them, his fine shall be 10 000 sestertii’ which, at the time, was a very large fine. Clearly, the ‘polluter pays’ principle was readily adopted by the Romans! Further historical, architectural and engineering details of the ancient aqueducts of Rome are given by Bono and Boni (2001) and Hodge (2008).

      The Vergine aqueduct is one of only two of the original aqueducts still in use. The name derives from its predecessor, the Aqua Virgo, constructed by Marcus Agrippa in 19 BC. The main channels were renovated and numerous secondary channels and end‐most points (mostre) added during the Renaissance and Baroque periods, culminating in several fountains, including the famous Trevi fountain completed in 1762 (Plate 1.3). The total discharge of the ancient aqueducts was in excess of 10 m3 s−1 supplying a population at the end of the first century AD of about 0.5 million. Today, Rome is supplied with 23 m3 s−1 of groundwater, mainly from karst limestone aquifers, and serving a population of 3.5 million (Bono and Boni 2001). Many of the groundwater sources are springs from the karst system of the Simbruini Mountains east of Rome.

      A clear understanding of the hydrological cycle was achieved by the end of the seventeenth century. The English experimentalist Robert Hooke (1635–1703) made a number of observations on whether precipitation was sufficient to fully account for terrestrial stream flow (Deming 2019) and the French experimentalists Pierre Perrault (1611–1680) and Edme Mariotte (ca. 1620–1684) recorded measurements of rainfall and runoff in the River Seine drainage basin. In addition, the English astronomer Edmond Halley (1656–1742) demonstrated that evaporation of seawater was sufficient to account for all springs and stream flow (Halley 1691). Over 100 years later, the famous chemist John Dalton (1766–1844) made further observations of the water cycle, including a consideration of the origin of springs (Dalton 1799).

Photo depicts baroque-style depiction of the interlaced systems of air, fire and water within the Earth as conceived by the German Jesuit scholar Athanasius Kircher (1602–1680) in his book Mundus Subterraneus (1664).

      Source: AF Fotografie/Alamy Stock Photo.

      In Britain, the industrial revolution led to a huge demand for water resources to supply new towns and cities, with Nottingham, Liverpool, Sunderland and parts of London all relying on groundwater. This explosion in demand for water gave impetus to the study of the economic aspects of geology. It was at this time that Lucas (1874) introduced the term ‘hydrogeology’ and produced the first real hydrogeological map (Lucas 1877). Towards the end of the nineteenth century, William Whitaker, sometimes described as the ‘father of English hydrogeology,’ and an avid collector of well records, produced the first water supply memoir of the Geological Survey (Whitaker and Reid 1899) in which the water supply of Sussex is systematically recorded.

      The pioneering work of Darcy and Dupuit was followed by the German civil engineer, Adolph Thiem (1836–1908), who made theoretical analyses of problems concerning groundwater flow towards wells and galleries, and by the Austrian Philip Forchheimer (1852–1933) who, for the first time, applied advanced mathematics to the study of hydraulics. One of his major contributions was a determination of the relationship between equipotential surfaces and flow lines. Inspired by earlier techniques used to understand heat flow problems, and starting with Darcy's Law and Dupuit's assumptions, Forchheimer derived a partial differential equation, the Laplace equation, for steady groundwater flow. Forchheimer was also the first to apply the method of mirror images to groundwater flow problems; for example, the case of a pumping well located adjacent to a river.

      Much of Forchheimer's work was duplicated in the United States by Charles Slichter (1864–1946), apparently oblivious of Forchheimer's existence. However, Slichter's theoretical approach was vital to the advancement of groundwater hydrology in America at a time when the emphasis was on exploration and understanding the occurrence of groundwater. This era was consolidated by Meinzer (1923) in his book on the occurrence of groundwater in the United States. Meinzer (1928) was also the first to recognize the elastic storage behaviour of artesian aquifers. From his study of the Dakota sandstone (Meinzer and Hard 1925), it appeared that more water was pumped from the region than could be explained by the quantity of recharge at outcrop, such that the water‐bearing formation must possess some elastic behaviour in releasing water contained in storage. Seven years later, Theis (1935), again

Скачать книгу