Sustainable Solutions for Environmental Pollution. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Sustainable Solutions for Environmental Pollution - Группа авторов страница 16

Sustainable Solutions for Environmental Pollution - Группа авторов

Скачать книгу

with a control reactor, their study demonstrated the possibility of valorization of real organic waste (i.e., food waste) for bioethanol production via EF. As shown in Table 1.1, the majority of EF studies were conducted with synthetic substrates. Therefore, future EF should consider utilizing real waste biomass to demonstrate the feasibility of EF for practical application.

      1.3.3 Bio-Butanol

      Low biobutanol yield, as well as production rate, have been identified as major bottlenecks for wide-scale application of fermentative biobutanol production (Elbeshbishy et al., 2015). Over the years, various strategies, including the deployment of genetically modified Clostridia and non-Clostridia organisms as well as designing novel fermentation systems, have been considered for alleviating these bottlenecks. In recent years, a few studies investigated biobutanol production via EF of glucose with pure-culture Clostridium species (Choi et al., 2014; Engel et al., 2019; Mostafazadeh et al., 2016). Choi et al. (2014) studied cathodic EF of glucose with pure culture Clostridium pasteurianum DSM 525 in a dual-chamber EF system. The authors found that C. pasteurianum could produce butanol by utilizing electrons from both cathode and substrate (glucose). Although NADH generation from electricity was trivial as compared to that generated from glucose, EF could increase butanol production by 2.5 times over the control fermenter. Thus, their results suggested a metabolic shift in reduction pathways in C. pasteurianum due to the applied potential.

      1.3.4 Microalgae Derived Lipids

      Up to date, fossil fuels have been widely adopted as energy sources across the world. However, there is a great need to significantly develop the renewable fuels (e.g., non-fossil fuel) as energy sources on a large scale to outcompete the fossil fuels, eliminating the issues of aggravating CO2 concentrations and global warming (IPCC, 2018; Liu et al., 2019; Liu et al., 2020c). Out of many renewable fuels, microalgae-derived biofuels have demonstrated to be highly promising due to their advantages, such as high biomass production per unit area, a high weight ratio of lipids and ability to accumulate lipids in oleosomes, and no competition for arable land usage (Adeniyi et al., 2018; Chisti, 2007; Hallenbeck et al., 2016; Hu et al., 2008; Rittmann, 2008). Despite these attracting features, several drawbacks for the microalgae biofuel generation have been reported, emphasizing their high costs, and environmental concerns associated with algae harvesting and lipids extraction (Markou and Nerantzis, 2013; Pierobon et al., 2018; Rittmann, 2008; Sills et al., 2013). For instance, the requirement of pre-treatment (e.g., acid/alkaline hydrolysis, pulsed electric fields, ultrasound (Sheng et al., 2011; Zbinden et al., 2013)) for microalgae processing are generally highly energy intensive (e.g., in terms of both capital and operational costs), which was one of the arguments against further development and scaling-up. Lipid extraction is a critical step prior to the microalgal biodiesel production process. However, highly toxic chloroform-methanol solvents have been widely adopted for lipid extractions due to their effective performance (e.g., the ability to penetrate cell wall and membrane) (Bligh and Dyer, 1959; Folch et al., 1957). However, they must be replaced by other non-toxic solvents (e.g., hexane-isopropanol) due to the environmental and public health concerns (Lai et al., 2016a; Lai et al., 2014). Hence, a greener approach is required to address the challenges associated with microalgae-derived lipids extraction.

      However, the SF itself can suffer from the fact that the protein fermentation is slower than the carbohydrate fermentation (Lu et al., 2010). Furthermore, accumulation of short-chain carboxylates (e.g., high COD in the system) is another challenge (Lai et al., 2016b), resulting in the following two cases: (1) wasting the electrons from the feed biomass (e.g., not all the electrons are used up or recovered as value-added products); and (2) lowering pH, which inhibits

Скачать книгу