Physics of the Terrestrial Environment, Subtle Matter and Height of the Atmosphere. Eric Chassefiere

Чтение книги онлайн.

Читать онлайн книгу Physics of the Terrestrial Environment, Subtle Matter and Height of the Atmosphere - Eric Chassefiere страница 20

Physics of the Terrestrial Environment, Subtle Matter and Height of the Atmosphere - Eric Chassefiere

Скачать книгу

by this immense expansion of which it is capable, can spread out into the intervals of the stars and be the only matter there.” The very term ether is ambiguous; some people called ether a fluid of the same nature as other bodies, but distinguished by its tenuousness, whereas ancient tradition attributed to it a purer and more subtle nature than that of “substances around the Earth”. There is thus a continuum of representations of ether, which goes from pure air to the most subtle matter. A subtle matter, as defined in the Encyclopédie, is originally “the name that Cartesians give to a matter that they suppose to pass through and freely penetrate the pores of all bodies, and fill these pores so as not to leave any voids or interstices between them.” For this matter to leave no void, it must not itself contain any, which implies that it is “perfectly solid, much more solid, for example, than gold, and therefore much heavier than gold, and more resistant.” This is judged “not to agree with phenomena”, such as the regular movements of the planets, as well as Newton’s argument against the Cartesian system: “if the heavens were filled exactly with fluid matter, however subtle, they would resist the movement of the planets and comets much more than mercury would”. But Newton nevertheless agreed that there was subtle matter, “or a medium much looser than air, which penetrates the densest bodies”. Following the thermometer experiment already described, he concluded that the heat passes through the glass of the pneumatic machine emptied of its air, which implies the presence of an intermediate body passing through the pores of the glass and propagating heat, just like light. This intermediate body, which he called the ethereal medium, must bathe the whole space since, after passing through the glass, it must pass through all the other bodies. Having established the existence of this ethereal medium, Newton moved on to its properties:

      and says that it is not only rarer and more fluid than air, but also much more elastic and more active; and that by virtue of these properties, it can produce many of the phenomena of nature. It is, for example, to the pressure of this medium that Newton seems to attribute the gravity of all other bodies; and to its elasticity, the elastic force of air and nerve fibers, emission, refraction, reflection, and other phenomena of light.

      Thus, Newton’s ethereal medium explains not only the propagation of light and heat in a vacuum, but also the gravity of bodies and the elasticity of the air, which is conferred on it by the ether with which it is mixed.

      The Lexicon entry ÆTHER begins with Hooke‘s definition of it as a “Medium or Fluid Body in which all other Bodies do as it were swim and move”, but he adds that this conception is too close to the “Cartesian Doctrine of an Absolute Plenum, which by many Infallible Reasons and Experiments is proved to be impossible”. And this is how, with many nuances, he defines ether:

      Thus, the conception of ether expressed in the Lexicon differs little from that in the DUF and the Encyclopédie, and it differs from the Cartesian system, of which even Hooke’s position is considered too close, in favor of an extremely light ether filling all space, as introduced by Newton, at the risk of the incoherence of his thought. At the beginning of the 18th century, ether was therefore a vague notion, as well as a proliferating one, whose existence was far from being unanimously accepted.

      We will end this chapter by returning to the main constituent of the atmosphere, air, and by analyzing what the entry AIR from the Encyclopédie tells us about its three fundamental properties, namely its fluidity, its gravity and its elasticity. The idea that heat promotes the fluidity of the body by the agitation of the parts, a very high degree of agitation, beyond the level necessary to produce fluidity, producing heat, and at the extreme limit the burning, which we find, for example, in the entry HEAT of the Lexicon, finds its exact translation in the following passage of the Encyclopédie:

      Concerning the gravity of air, the author of the entry cites experiments conducted in pneumatic machines, which prove the weight of air. But where does its weight come from? “Some people may doubt that air is heavy by itself, and believe that its gravity may come from the vapors and exhalations it is filled with. There is no reason to doubt that the gravity of air does indeed depend in part on the vapor.” In support of this view, the author describes an experiment in which a glass ball full of air, closed at the top by a partition with small holes, is pumped out completely. Afterward, the partition is covered with salt of tartar, and the air is allowed to enter slowly through the salts into the ball. And this is what the author says:

      If the air in the atmosphere is dry, it will be found that the air which had previously filled the ball was of the same gravity as the air which entered through the salts; and if it is humid, it will be found that the air which has passed through the salts is lighter than the air which had previously filled the ball. But although this experiment proves that the gravity of the air depends in part on the vapors that swim through it, one cannot help but recognize that the air is heavy by itself; for otherwise it would not be possible to conceive how the clouds that weigh a lot could remain suspended in it, more often than not only floating in the air with which they are in equilibrium.

      Then, different values of the weight of air relative to that of water, estimated by Riccioli, Marin Mersenne, Galileo or Boyle, are provided, all on the order of 1:1000. Measurements made in the presence of the Royal Society of London gave a proportion varying between 1:840 and 1:885. But Musschenbroek gave a much wider range of variation:

      Musschenbroek says he sometimes found the gravity of air to be as heavy as water, like 1 to 606, when the air was very heavy. He adds that by doing this experiment during different years and in different seasons, he observed a continuous difference in this proportion of gravity; so that according to the experiments made in various places of Europe he believes that the ratio of the gravity of air to that of water must be reduced to certain limits, which are about 1 to 606, and from there to 1000.

      Concerning the elasticity of air, which was considered at the time to be unique, contrary to gravity and fluidity, which it shares with other fluids, it was noted that the law of expansion, known today as Boyle–Mariotte’s

Скачать книгу