Physiology of Salt Stress in Plants. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Physiology of Salt Stress in Plants - Группа авторов страница 22

Physiology of Salt Stress in Plants - Группа авторов

Скачать книгу

halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyteproline and tight control of Na+ uptake in T. halophila. Plant Cell Environ. 29: 1220–1234.

      43 Kazachkova, Y., Batushansky, A., Cisneros, A. et al. (2013). Growth platform‐dependent and ‐independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress. Plant Physiol. 162: 1583–1598.

      44 Kim, D.W., Rakwal, R., Agrawal, G.K. et al. (2005). A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26: 4521–4539.

      45 Kinnersley, A.M. and Turano, F.J. (2010). Gamma Aminobutyric Acid (GABA) and plant responses to stress. CRC Crit. Rev. Plant Sci. 2689: 37–41.

      46 Kirchhoff, H., Hall, C., Wood, M. et al. (2011). Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. U. S. A. 108: 20248–20253.

      47 Kosova, K., Prasil, I.T., and Vitamvas, P. (2013). Protein contribution to plant salinity response and tolerance acquisition. Int. J. Mol. Sci. 14: 6757–6789.

      48 Kumari, N., Malik, K., Rani, B. et al. (2019). Insights in the physiological, biochemical and molecular basis of salt stress tolerance in plants. In: Microorganisms in Saline Environments: Strategies and Functions (eds. B. Giri and A. Verma), 353–374. Switzerland: Springer Nature.

      49 Lambers, H., Chapin, F.S., and Pons, T.L. (2008). Respiration. In: Plant Physiological Ecology, 2e, 101–150. New York: Springer.

      50 Mishra, A. and Tanna, B. (2017). Halophytes: potential resources for salt stress tolerance genes and promoters. Front. Plant Sci. 8: 1–10.

      51 Mitsuya, S., El‐Shami, M., Sparkes, I.A. et al. (2010). Salt stress causes peroxisome proliferation, but inducing peroxisome proliferation does not improve NaCI tolerance in Arabidopsis thaliana. PLoS One 5: e9408.

      52 Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681.

      53 Munns, R., Guo, J., Passioura, J.B., and Cramer, G.R. (2000). Leaf water status controls day‐time but not daily rates of leaf expansion in salt‐treated barley. Aust. J. Plant Physiol. 27: 949–957.

      54 Munns, R., James, R.A., Xu, B. et al. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotechnol. 30: 360–364.

      55 Munns, R., Day, D.A., Fricke, W. et al. (2020). Energy costs of salt tolerance in crop plants. New Phytol. 225: 1072–1090.

      56  Murata, N., Takahashi, S., Nishiyama, Y., and Allakhverdiev, S.I. (2007). Photoinhibition of photosystem II under environmental stress. Biochem.Biophys. Acta. ‐ Bioenerg. 1767: 414–421.

      57 Ondrasek, G., Rengel, Z., and Veres, S. (2011). Soil salinisation and salt stress in crop production. In: Abiotic Stress in Plants ‐ Mechanisms and Adaptations (ed. A. Shanker), 171–190. Croatia: InTech.

      58 Pagliano, C., La Rocca, N., Andreucci, F. et al. (2009). The extreme halophyte Salicornia veneta is depleted of the extrinsic PsbQ and PsbP proteins of the oxygen‐evolving complex without loss of functional activity. Ann. Bot. 103: 505–515.

      59 Panta, S., Flowers, T., Lane, P. et al. (2014). Halophyte agriculture: success stories. Environ. Exp. Bot. 107: 71–83.

      60 Panta, S., Flowers, T., Doyle, R. et al. (2016). Growth responses of Atriplex lentiformis and Medicago arborea in three soil types treated with saline water irrigation. Environ. Exp. Bot. 128: 39–50.

      61 Pattanayak, G.K. and Tripathy, B.C. (2002). Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 291: 921–924.

      62 Pavlovic, I., Mlinaric, S., Tarkowska, D. et al. (2019). Early Brassica crops responses to salinity stress: a comparative analysis between chinese cabbage, white cabbage, and kale. Front. Plant Sci. 10: 1–16.

      63 Plaxton, W.C. (1996). The organization and regulation of plant glycolysis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 185–214.

      64 Porcel, R., Aroca, R., and Ruiz‐Lozano, J.M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 32: 181–200.

      65 Qadir, M., Quillérou, E., Nangia, V. et al. (2014). Economics of salt‐induced land degradation and restoration. Nat. Resour. Forum 38: 282–295.

      66 Qi, C.H., Chen, M., Song, J., and Wang, B.S. (2009). Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under salinity. Plant Sci. 176: 200–205.

      67 Renault, H., Roussel, V., El Amrani, A. et al. (2010). The Arabidopsis pop2‐1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. 10: 1–16.

      68 Santos, C.V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. (Amsterdam) 103: 93–99.

      69 Sasi, S., Venkatesh, J., Daneshi, R.F., and Gururani, M.A. (2018). Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plan. Theory 7: 100.

      70 Satir, O. and Berberoglu, S. (2016). Crop yield prediction under soil salinity using satellite derived vegetation indices. F. Crop Res. 192: 134–143.

      71 Shabala, S.N. and Lew, R.R. (2002). Turgor regulation in osmotically stressed arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol. 129: 290–299.

      72 Shabala, S. and Shabala, L. (2011). Ion transport and osmotic adjustment in plants and bacteria. Biomol. Concepts 5: 407–419.

      73 Shabala, L., Zhang, J., Pottosin, I. et al. (2016). Cell‐type‐specific H+‐ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress. Plant Physiol. 172: 2445–2458.

      74  Shabala, S., Chen, G., Chen, Z.H., and Pottosin, I. (2020). The energy cost of the tonoplast futile sodium leak. New Phytol. 225 (3): 1105–1110.

      75 Shi, H., Quintero, F.J., Pardo, J.M., and Zhu, J.K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long‐distance Na+ transport in plants. Plant Cell 14: 456–477.

      76 Singh, D., Yadav, N.S., Tiwari, V. et al. (2016). A SNARE‐like superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery. Front. Plant Sci. 7: 737.

      77 Singh‐Rawal, P., Zsiros, O., Bharti, S. et al. (2011). Mechanism of action of anions on the electron transport chain in thylakoid membranes of higher plants. J. Bioenerg. Biomembr. 43: 195–202.

      78 Snapp, S.S., Shennan, C., and Van Bruggen, A.H.C. (1991). Effects of salinity on severity of infection by Phytophthora parasitica Dast., ion concentrations and growth of tomato, Lycopersicon esculentum Mill. New Phytol. 119: 275–284.

      79 Song, C.P., Guo, Y., Qiu, Q. et al. (2004). A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 101: 10211–10216.

      80 de Souza Lima, M.D., Lopes, N.F., Zimmer, P.D. et al. (2012). Enzyme expression in indica and japonica rice cultivars under

Скачать книгу