Wetland Carbon and Environmental Management. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Wetland Carbon and Environmental Management - Группа авторов страница 59
217 Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518–527. https://doi.org/10.1890/13‐0640.1
218 Keil, R. G., Montluçon, D. B., Prahl, F. G., & Hedges, J. I. (1994). Sorptive preservation of labile organic matter in marine sediments. Nature, 370, 549–552. https://doi.org/doi.org/10.1038/370549a0
219 Keiluweit, M., Nico, P. S., Kleber, M., & Fendorf, S. (2016). Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry, 127(2–3), 157–171. https://doi.org/10.1007/s10533‐015‐0180‐6
220 Keller, J. K., & Bridgham, S. D. (2007). Pathways of anaerobic carbon cycling across an ombrotrophic‐minerotrophic peatland gradient. Limnology and Oceanography, 52(1), 96–107. https://doi.org/10.4319/lo.2007.52.1.0096
221 Keller, J. K., Bridgham, S. D., Chapin, C. T., & Iversen, C. M. (2005). Limited effects of six years of fertilization on carbon mineralization dynamics in a Minnesota fen. Soil Biology and Biochemistry, 37(6), 1197–1204. https://doi.org/10.1016/j.soilbio.2004.11.018
222 Keller, J. K., Wolf, A. A., Weisenhorn, P. B., Drake, B. G., & Megonigal, J. P. (2009). Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry, 96, 101–117. https://doi.org/10.1007/s10533‐009‐9347‐3
223 Keller, J. K., Weisenhorn, P. B., & Megonigal, J. P. (2009). Humic acids as electron acceptors in wetland decomposition. Soil Biology and Biochemistry, 41(7), 1518–1522. https://doi.org/10.1016/j.soilbio.2009.04.008
224 Keppler, F., Hamilton, J. T. G., Braß, M., & Röckmann, T. (2006). Methane emissions from terrestrial plants under aerobic conditions. Nature, 439, 187–191. https://doi.org/10.1038/nature04420
225 Keuskamp, J. A., Hefting, M. M., Dingemans, B. J. J., Verhoeven, J. T. A., & Feller, I. C. (2015). Effects of nutrient enrichment on mangrove leaf litter decomposition. Science of the Total Environment, 508, 402–410. https://doi.org/10.1016/j.scitotenv.2014.11.092
226 Khan, H., & Brush, G. S. (1994). Nutrient and metal accumulation in a freshwater tidal marsh. Estuaries, 17(2), 345–360. https://doi.org/10.2307/1352668
227 Kim, S. Y., Veraart, A. J., Meima‐Franke, M., & Bodelier, P. L. E. (2015). Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments. Geoderma, 259–260, 354–361. https://doi.org/10.1016/j.geoderma.2015.03.015
228 Kitti, H., Forbes, B. C., & Oksanen, J. (2009). Long‐ and short‐term effects of reindeer grazing on tundra wetland vegetation. Polar Biology, 32(2), 253–261. https://doi.org/10.1007/s00300‐008‐0526‐9
229 Kleber, M., Sollins, P., & Sutton, R. (2007). A conceptual model of organo‐mineral interactions in soils: Self‐assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85(1), 9–24. https://doi.org/10.1007/s10533‐007‐9103‐5
230 Klemedtsson, L., Von Arnold, K., Weslien, P., & Gundersen, P. (2005). Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biology, 11(7), 1142–1147. https://doi.org/10.1111/j.1365‐2486.2005.00973.x
231 Klopatek, J. M. (1988). Some thoughts on using a landscape framework to address cumulative impacts on wetland food chain support. Environmental Management, 12(5), 703–711. https://doi.org/10.1007/BF01867547
232 Knicker, H., Scaroni, A. W., & Hatcher, P. G. (1996). 13C and 15N NMR spectroscopic investigation on the formation of fossil algal residues. Organic Geochemistry, 24(6–7), 661–669. https://doi.org/10.1016/0146‐6380(96)00057‐5
233 Knittel, K., & Boetius, A. (2009). Anaerobic oxidation of methane: Progress with an unknown process. Annual Review of Microbiology, 63(1), 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130
234 Knorr, K. H. (2013). DOC‐dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths – Are DOC exports mediated by iron reduction/oxidation cycles? Biogeosciences, 10(2), 891–904. https://doi.org/10.5194/bg‐10‐891‐2013
235 Knox, S. H., Sturtevant, C., Matthes, J. H., Koteen, L., Verfaillie, J., & Baldocchi, D. (2015). Agricultural peatland restoration: Effects of land‐use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento‐San Joaquin Delta. Global Change Biology, 21(2), 750–765. https://doi.org/10.1111/gcb.12745
236 Kögel‐Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34, 139–162. https://doi.org/10.1016/S0038‐0717(01)00158‐4
237 Kon, K., Hoshino, Y., Kanou, K., Okazaki, D., Nakayama, S., & Kohno, H. (2012). Importance of allochthonous material in benthic macrofaunal community functioning in estuarine salt marshes. Estuarine, Coastal and Shelf Science, 96(1), 236–244. https://doi.org/10.1016/j.ecss.2011.11.015
238 Korrensalo, A., Mehtätalo, L., Alekseychik, P., Uljas, S., Mammarella, I., Vesala, T., & Tuittila, E.‐S. (2020). Varying vegetation composition, respiration and photosynthesis decrease temporal variability of the CO2 sink in a boreal bog. Ecosystems, 23, 842–858. https://doi.org/10.1007/s10021‐019‐00434‐1
239 Kostka, J. E., Roychoudhury, A., & van Cappellen, P. (2002). Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry, 60, 49–76. https://doi.org/10.1023/A:1016525216426
240 Kreutzweiser, D. P., Hazlett, P. W., &