Автоутопия. Будущее машин. Джон Бентли

Чтение книги онлайн.

Читать онлайн книгу Автоутопия. Будущее машин - Джон Бентли страница 7

Автоутопия. Будущее машин - Джон Бентли Разговоры о будущем

Скачать книгу

проблемы и с системой глубокого обучения. По сути, каждая ситуация, с которой сталкивается система, должна быть ей знакома. В противном случае у нее нет варианта действий. Одна из проблем называется «переобучение». Система начинает устанавливать связь между показателями, которые друг к другу никак не относятся. Это все равно что пытаться угадать число, которое выпадет на кубике, основываясь на его цвете или времени суток. Программа искусственного интеллекта будет продолжать строить гипотезы по поводу выпадающих чисел на базе всех параметров, которые ей доступны.

      Проблема усугубляется, когда рассматривается больше факторов. Представим, что я повернул налево. Система может решить, что я поступил так из-за велосипедиста в 200 метрах от меня. К тому же я уже несколько раз делал так в этом районе в это время суток. Я описываю очень схематично, но эти примеры позволят понять сложность обучения ИИ вождению, так как там множество переменных.

      Недообучение – обратная проблема. Система ИИ не всегда улавливает нужные связи. К примеру, она может не распознать обочину дороги или не понять, пешеход перед ней или велосипедист, неверно истолковав данные с камеры и лидара. Обычно для борьбы с недообучением в систему загружают новые данные или больше практической информации о взаимосвязи между системой ИИ и реальным миром. В компаниях, занимающихся разработкой беспилотных автомобилей, тысячи сотрудников вручную снабжают изображения тегами с полезной информацией. Такое дополнение нейронных сетей фактическими данными позволяет устранить недообучение.

      Другая проблема – обобщение. Если человек знает, как выглядят мышь и песчанка, то без труда скажет, что хомяк находится где-то между ними – еще один млекопитающий грызун. Искусственному интеллекту такая задача кажется сложной. Ему тяжело взять что-то знакомое и на основе этого создать нечто новое, которое при этом обладает смыслом. ИИ или вовсе не распознает новый объект, или выдает постоянно меняющиеся описания. Именно поэтому чат-боты пока плохо поддерживают беседу. Нет ощущения, будто они понимают хоть что-то. Чат-боты просто подбирают более-менее подходящую фразу из тех, что слышали прежде.

      Искусственный интеллект в действии. Процессор Nvidia выделяет разноцветной обводкой и другими способами те объекты, которые удалось распознать: машины, пешеходов и велосипедистов.

      Эксперты по ИИ считают программное обеспечение беспилотных автомобилей чем-то вроде черного ящика. Входные данные известны. Выходные – тоже. Но как система приходит от одного к другому, остается загадкой. Не вполне понятно, как работают алгоритмы или как «думает» машина. В компании Nvidia попытались визуализировать это с точки зрения автопилота. На изображении, полученном с датчиков автомобиля, они выделили объекты, которые влияют на принятие решений. Результаты обнадеживают: процессор фокусируется на контурах дороги, разметке и припаркованных автомобилях.

Скачать книгу