Biosorption for Wastewater Contaminants. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biosorption for Wastewater Contaminants - Группа авторов страница 24

Biosorption for Wastewater Contaminants - Группа авторов

Скачать книгу

on marine green algae biomass. Environmental Engineering and Management Journal 11 (3): 607–615. doi:10.30638/eemj.2012.076.

      51 Macek, T. and Mackova, M. (2011). Potential of biosorption technology. In: Microbial Biosorption of Metals (ed.: Kotrba, M. Mackova, and T. Macek). Springer. doi:10.1007/978‐94‐007‐0443‐5_2.

      52 Mamisahebei, S., Khaniki, G.R.J., Torabian, A. et al. (2007). Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass. Journal of Environmental Health Science and Engineering 4 (2): 85–92.

      53 Mapolelo, M. (2004). Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae. Talanta 64 (1): 39–47. doi:10.1016/j.talanta.2003.10.058.

      54 Moat, A.G., Foster, J.W., and Spector, M.P. (2002). Microbial Physiology. New York: Wiley‐Liss.

      55 Mohan, D. and Singh, K.P. (2002). Single‐ and multi‐component adsorption of cadmium and zinc using activated carbon derived from bagasse‐an agricultural waste. Water Res 36: 2304–2318.

      56  Mohan, D., Singh, K.P., and Singh, V.K. (2006). Chromium (III) removal from wastewater using low cost activated carbon derived from agriculture waste material and activated carbon fabric filter. J Hazard Mater 135: 280–295.

      57 Monsieurs P., Hobman J., Vandenbussche G. et al. (2015). Response of Cupriavidus metallidurans CH34 to Metals. In: Metal Response in Cupriavidus metallidurans (ed. M. Mergeay and R. Van Houdt), 45–89. Springer Briefs in Molecular Science. Springer. doi:10.1007/978‐3‐319‐20594‐6_3.

      58 Montanher, S.F., Oliveira, E.A., and Rollemberg, M.C. (2005). Removal of metal ions from aqueous solutions by sorption onto rice bran. J Hazard Mater 117: 207–211.

      59 Mrvčić, J., Stanzer, D., Šolić, E. et al. (2012). Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World Journal of Microbiology and Biotechnology 28 (9): 2771–2782. doi:10.1007/s11274‐012‐1094‐2.

      60 Mulligan, C., Yong, R., and Gibbs, B. (2001). Remediation alternative treatment option for heavy metal bearing wastewaters: A review. Bioresource Technology 53: 195–206.

      61 Muraleedharan, T.R., Iyengar, L., and Venkobachar, C. (1991). Biosorption: An attractive alternative for metal removal and recovery. Current Science 61 (6): 379–385.

      62 Murphy, V., Hughes, H., and McLoughlin, P. (2008). Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70 (6): 1128–1134. doi:10.1016/j.chemosphere.2007.08.015.

      63 Mustapha, M.U. and Halimoon, N. (2015). Microorganisms and biosorption of heavy metals in the environment: a review paper. Journal of Microbial and Biochemical Technology 07 (05). doi:10.4172/1948‐5948.1000219.

      64 Nagashetti, V., Mahadevaraju, G.K., Muralidhar, T.S. et al. (2013). Biosorption of heavy metals from soil by Pseudomonas aeruginosa. International Journal of Innovative Technology and Exploring Engineering (IJITEE) 2 (6): 9–17.

      65 Oves, M., Khan, M.S., and Zaidi, A. (2013). Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi Journal of Biological Sciences 20 (2): 121–129. doi:10.1016/j.sjbs.2012.11.006.

      66 Oyedepo, T.A. (2011). Biosorption of lead (II) and copper (II) metal ions on Calotropisprocera (Ait.). Science Journal of Pure and Applied Chemistry 1: 1–7.

      67 Park, D., Yun, Y.‐S., and Park, J.M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering 15 (1): 86–102. doi:10.1007/s12257‐009‐0199‐4.

      68 Park, J.K., Lee, J.W., and Jung, J.Y. (2003). Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells. Enzyme and Microbial Technology 33 (4): 371–378. doi:10.1016/S0141‐0229(03)00133‐9.

      69 Pehlivan, E., Altun, T., and Parlayici, S. (2012). Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chem 135: 2229–2234.

      70 Prasad, K.S., Srivastava, P., Subramanian, V., and Paul, J. (2011). Biosorption of As(III) ion on Rhodococcus sp. WB‐12: biomass characterization and kinetic studies. Separ Sci Technol 46: 2517–2525.

      71 Quiton, K.G., Doma, B., Futalan, C.M. et al. (2018). Removal of chromium(VI) and zinc(II) from aqueous solution using kaolin‐supported bacterial biofilms of Gram‐negative E. coli and Gram‐positive Staphylococcus epidermidis. Sustainable Environment Research 28 (5): 206–213. doi:10.1016/j.serj.2018.04.002.

      72  Rajapaksha, A.U., Vithanage, M., Ahmad, M. et al. (2015). Enhanced sulfamethazine removal by steam‐activated invasive plant‐derived biochar. Journal of Hazardous Materials 290: 43–50. doi:10.1016/j.jhazmat.2015.02.046.

      73 Rana, R.S., Singh, P., Kandari, V. et al. (2017). A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective. Applied Water Science 7 (1): 1–12. doi:10.1007/s13201‐014‐0225‐3.

      74 Rani, M.J., Hemambika, B., Hemapriya, J., and Kannan, V.R. (2010). Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: A biosorption approach. African Journal of Environmental Science and Technology 4 (2): 077–083.

      75 Remacle, J. (1990). The cell wall and metal binding. In: Biosorption of Heavy Metals (ed. B. Volesky), 83–92. Boca Raton, Florida: CRC Press.

      76 Rezaei, H. (2016). Biosorption of chromium by using Spirulina sp. Arabian Journal of Chemistry 9 (6): 846–853. doi:10.1016/j.arabjc.2013.11.008.

      77 Romera, E., González, F., Ballester, A. et al. (2007). Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology 98 (17): 3344–3353. doi:10.1016/j.biortech.2006.09.026.

      78 Saeed, A., Iqbal, M., and Akhtar, M.W. (2005). Removal and recovery of lead (II) from single and multiple (Cd, Ni, Cu, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater 117: 65–73.

      79 Saranya, K., Sundaramanickam, A., Shekhar, S. et al. (2018). Biosorption of multi‐heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2. Journal of Environmental Management 222: 396–401. doi:10.1016/j.jenvman.2018.05.083.

      80 Sarı, A., Uluozlü, Ö.D., and Tüzen, M. (2011). Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chemical Engineering Journal 167 (1): 155–161. doi:10.1016/j.cej.2010.12.014.

      81 Sayyadi, S., Ahmady‐Asbchin, S., Kamali, K. et al. (2017). Thermodynamic, equilibrium and kinetic studies on biosorption of Pb +2 from aqueous solution by Bacillus pumilus sp. AS1 isolated from soil at abandoned lead mine. Journal of the Taiwan Institute of Chemical Engineers 80: 701–708. doi:10.1016/j.jtice.2017.09.005.

      82 Shamim, S. (2018). Biosorption of heavy metals. In: Biosorption (ed. J. Derco and B. Vrana), 21–49. InTech.

      83 Shamim, S. and Rehman, A. (2014). Physicochemical surface properties of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress: Physicochemical surface properties under Cd stress. Journal of Basic Microbiology 54 (4): 306–314. doi:10.1002/jobm.201200434.

      84 Shamim, S., Rehman, A., and Qazi, M.H. (2014). Cadmium‐Resistance Mechanism in the Bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2. Archives of Environmental Contamination and Toxicology 67 (2): 149–157. doi:10.1007/s00244‐014‐0009‐7.

      85 Siñeriz,

Скачать книгу