Human Communication Technology. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Human Communication Technology - Группа авторов страница 18
8. Waibel, M. et al., RoboEarth, in IEEE Robotics & Automation Magazine, vol. 18, no. 2, pp. 69–82, June 2011.
9. Mohanarajah, G., Hunziker, D., D’Andrea, R., Waibel, M., Rapyuta: A cloud robotics platform. IEEE Trans. Autom. Sci. Eng., 12, 2, 481–493, 2015.9.
10. Pereira, A.B.M., Julio, R.E., Bastos, G.S., Rosremote: Using ROS on cloud to access robots remotely, in: Robot Operating System (ROS), pp. 569–605, Springer, 2019.
11. Protskaya, Y. and Veltri, L., Broker Bridging Mechanism for Providing Anonymity in MQTT, 2019 10th International Conference on Networks of the Future (NoF), pp. 110–113, 2019.
12. Pereira, A. B. M., and Bastos, G. S., ROSRemote, using ROS on cloud to access robots remotely, 2017 18th International Conference on Advanced Robotics (ICAR), pp. 284–289, 2017.
13. Sung Wook Moon, Young Jin Kim, Ho Jun Myeong, Chang Soo Kim, Nam Ju Cha and Dong Hwan Kim, Implementation of smartphone environment remote control and monitoring system for Android operating system-based robot platform, 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 211–214, 2011.
14. Bore, D., Rana, A., Kolhare, N. Shinde, U., Automated Guided Vehicle Using Robot Operating Systems. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 819–822, 2019.
15. Imtiaz Jaya, N. and Hossain, M. F., A Prototype Air Flow Control System for Home Automation Using MQTT Over Websocket in AWS IoT Core. 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), pp. 111–1116, 2018.
16. Tomar, N. and Gaur, M. S., Information theft through covert channel by exploiting HTTP post method, 2013 Tenth International Conference on Wireless and Optical Communications Networks (WOCN), pp. 1–5, 2013.
17. Gandhi, S., Gore, A., Nimbarte, S., Abraham, J., Implementation and Analysis of a Serverless Shared Drive with AWS Lambda, 2018 4th International Conference for Convergence in Technology (I2CT), pp. 1–6, 2018.
18. Lin, W. et al., Tracking Causal Order in AWS Lambda Applications, 2018 IEEE International Conference on Cloud Engineering (IC2E), pp. 50–60, 2018.
19. Yin Mok, W., A Feasible Schema Design Strategy for Amazon DynamoDB: A Nested Normal Form Approach, 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 903–907, 2020.
20. Kerr, J. and Nickels, K., Robot operating systems: Bridging the gap between human and robot, Proceedings of the 2012 44th Southeastern Symposium on System Theory (SSST), pp. 99–104, 2012.
21. Mahalleh, V. B. S., Chand, A. N., Rahman, A., Design, Implementation and Evaluation of Ultrasonic Measurement System using ROS and MQTT, 2020 IEEE 8th Conference on Systems, Process and Control (ICSPC), pp. 80–85, 2020.
22. Bhatnagar, A., Sharma, V., Raj, G., IoT based Car Pollution Detection Using AWS, 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE), pp. 306–311, 2018.
23. Pierleoni, P., Concetti, R., Belli, A., Palma, L., Amazon, Google and Microsoft Solutions for IoT: Architectures and a Performance Comparison, in IEEE Access, vol. 8, pp. 5455–5470, 2020.
24. Sun, C., Guo, K., Xu, Z., Ma, J., Hu, D., Design and Development of Modbus/MQTT Gateway for Industrial IoT Cloud Applications Using Raspberry Pi, 2019 Chinese Automation Congress (CAC), pp. 2267–2271, 2019.
25. Sadavarte, S. S. and E. Bodanese, Pregnancy Companion Chatbot Using Alexa and Amazon Web Services, 2019 IEEE Pune Section International Conference (PuneCon), pp. 1–5, 2019.
26. Arnold, R.D. and Wade, J.P., A definition of systems thinking: A systems approach. Proc. Comput. Sci., 44, 669–678, 2015.
27. Hu, G., Tay, W.P., Wen, Y., Cloud robotics: Architecture challenges and applications. IEEE Network, 26, 21–28, May/Jun., 2012.
28. Kehoe, B., Patil, S., Abbeel, P., Goldberg, K., A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng., 12, 2, 398–409, Apr. 2015.
29. Campo, A.D., Gambi, E., Montanini, L., Perla, D., Raffaeli, L., Spisante, S., MQTT in AAL systems for home monitoring of people with dementia. Proc. IEEE 27th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), pp. 1–6, Sep. 2016.
30. Shamszaman, Z.U. and Ali, M.I., Enabling cognitive contributory societies using SIoT: QoS aware real-time virtual object management. J. Parallel Distrib. Comput., 123, 61–68, 2019.
31. Grieco, L.A. et al., IoT-aided robotics applications: Technological implications target domains and open issues. Comput. Commun., 54, 1, 32–47, 2014.
32. Girau, R., Martis, S., Atzori, L., Lysis: A platform for IoT distributed applications over socially connected objects. IEEE Internet Things J., 4, 1, 40–51, 2017.
33. Komei, and Koji, Z., Rospeex: A cloud robotics platform for human-robot spoken dialogues. Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 6155–6160, Sep./Oct. 2015.
34. Banafa, A. 6 Three Major Challenges Facing IoT, in Secure and Smart Internet of Things (IoT): Using Blockchain and AI, pp. 33–44, River Publishers, 2018.
35. Muhammad, K., Khan, S., Palade, V., Mehmood, I., Albuquerque, V.H.C., Edge intelligence-assisted smoke detection in foggy surveillance environments. IEEE Trans. Ind. Inf., 16, 2, 1067–1075, Feb. 2020.
36. Chen, X., Jiao, L., Li, W., Fu, X., Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE Trans. Netw., 24, 5, 2795–2808, Oct. 2016.
37. Guo, H. and Liu, J., Collaborative computation offloading for multiaccess edge computing over fiber-wireless networks. IEEE Trans. Veh. Technol., 67, 5, 4514–4526, Jan. 2018.
38. Wang, K. et al., Green industrial internet of things architecture: an energy-efficient perspective. IEEE Commun. Mag., 54, 12, 48–54, Dec. 2016.
39. Wu, J. et al., Big data meet green challenges: Big data toward green applications. IEEE Syst. J., 10, 3, 888–900, Sep. 2016.
40. Zheng, M. et al., Energy-efficiency maximization for cooperative spectrum sensing in cognitive sensor networks. IEEE Trans. Green Commun. Netw., 1, 1, 29–39, Mar. 2017.
41. Yin, S. and Qu, Z., Resource allocation in multiuser OFDM systems with wireless information and power transfer. IEEE Commun. Lett., 20, 3, 594–597, Jan. 2016.
42. Chen, Y., Li, Y., Xu, D., Xiao, L., DQN-based power control for IoT transmission against jamming, in: Proc. of the IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5, Porto, Portugal, Jul. 2018.
43. Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., Bennis, M., Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet Things J., 6, 3, 4005–4018, Jun. 2019.
44. He, X., Wang, K., Huang, H.,