Polymer Composites for Electrical Engineering. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Polymer Composites for Electrical Engineering - Группа авторов страница 31
69 69 Lei, C., Wu, K., Wu, L. et al. (2019). Phase change material with anisotropically high thermal conductivity and excellent shape stability due to its robust cellulose/BNNSs skeleton. Journal of Materials Chemistry A 7: 19364–19373.
70 70 Tang, L., Zhao, X., Feng, C. et al. (2019). Bacterial cellulose/MXene hybrid aerogels for photodriven shape‐stabilized composite phase change materials. Solar Energy Materials and Solar Cells 203: 110174.
71 71 Du, X., Qiu, J., Deng, S. et al. (2020). Flame‐retardant and form‐stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar‐thermal conversion efficiency. Journal of Materials Chemistry A 8: 14126–14134.
72 72 Fallahi, A., Guldentops, G., Tao, M. et al. (2017). Review on solid–solid phase change materials for thermal energy storage: molecular structure and thermal properties. Applied Thermal Engineering 127: 1427–1441.
73 73 Xi, P., Xia, L., Fei, P. et al. (2012). Preparation and performance of a novel thermoplastics polyurethane solid–solid phase change materials for energy storage. Solar Energy Materials and Solar Cells 102: 36–43.
74 74 Fu, X., Xiao, Y., Hu, K. et al. (2016). Thermosetting solid–solid phase change materials composed of poly(ethylene glycol)‐based two components: flexible application for thermal energy storage. Chemical Engineering Journal 291: 138–148.
75 75 Zhou, Y., Liu, X., Sheng, D. et al. (2018). Polyurethane‐based solid–solid phase change materials with in situ reduced graphene oxide for light‐thermal energy conversion and storage. Chemical Engineering Journal 338: 117–125.
76 76 Meng, Q. and Hu, J. (2008). A poly(ethylene glycol)‐based smart phase change material. Solar Energy Materials and Solar Cells 92: 1260–1268.
77 77 Xi, P., Zhao, F., Fu, P. et al. (2014). Synthesis, characterization, and thermal energy storage properties of a novel thermoplastic polyurethane phase change material. Materials Letters 121: 15–18.
78 78 Du, X., Wang, H., Wu, Y. et al. (2017). Solid–solid phase‐change materials based on hyperbranched polyurethane for thermal energy storage. Journal of Applied Polymer Science 134: 45014.
79 79 Lu, X., Fang, C., Sheng, X. et al. (2019). One‐step and solvent‐free synthesis of polyethylene glycol‐based polyurethane as solid–solid phase change materials for solar thermal energy storage. Industrial & Engineering Chemistry Research 58: 3024–3032.
80 80 Yang, J., Tang, L.‐S., Bai, L. et al. (2019). High‐performance composite phase change materials for energy conversion based on macroscopically three‐dimensional structural materials. Materials Horizons 6: 250–273.
81 81 Han, Z. and Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science 36: 914–944.
82 82 Burger, N., Laachachi, A., Ferriol, M. et al. (2016). Review of thermal conductivity in composites: mechanisms, parameters and theory. Progress in Polymer Science 61: 1–28.
83 83 Apostolopoulou‐Kalkavoura, V., Munier, P., and Bergstrom, L. (2021). Thermally insulating nanocellulose‐based materials. Advanced Materials 33: 2001839.
84 84 Qian, T., Li, J., Min, X. et al. (2015). Enhanced thermal conductivity of PEG/diatomite shape‐stabilized phase change materials with Ag nanoparticles for thermal energy storage. Journal of Materials Chemistry A 3: 8526–8536.
85 85 Tang, B., Qiu, M., and Zhang, S. (2012). Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping. Solar Energy Materials and Solar Cells 105: 242–248.
86 86 Zhang, L., An, L., Wang, Y. et al. (2019). Thermal enhancement and shape stabilization of a phase‐change energy‐storage material via copper nanowire aerogel. Chemical Engineering Journal 373: 857–869.
87 87 Zhang, L. and Feng, G. (2020). A one‐step‐assembled three‐dimensional network of silver/polyvinylpyrrolidone (PVP) nanowires and its application in energy storage. Nanoscale 12: 10573–10583.
88 88 Wang, Y., Tang, B., and Zhang, S. (2013). Single‐walled carbon nanotube/phase change material composites: sunlight‐driven, reversible, form‐stable phase transitions for solar thermal energy storage. Advanced Functional Materials 23: 4354–4360.
89 89 Qian, T., Zhu, S., Wang, H. et al. (2019). Comparative study of single‐walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar‐to‐light conversion of PEG‐infiltrated phase‐change material composites. ACS Sustainable Chemistry & Engineering 7: 2446–2458.
90 90 Qian, T., Li, J., Feng, W., and Nian, H.E. (2017). Single‐walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material. Energy Conversion and Management 143: 96–108.
91 91 Liu, Z., Wei, H., Tang, B. et al. (2018). Novel light–driven CF/PEG/SiO2 composite phase change materials with high thermal conductivity. Solar Energy Materials and Solar Cells 174: 538–544.
92 92 Qi, G.‐Q., Yang, J., Bao, R.‐Y. et al. (2015). Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon 88: 196–205.
93 93 He, L., Wang, H., Yang, F., and Zhu, H. (2018). Preparation and properties of polyethylene glycol/unsaturated polyester resin/graphene nanoplates composites as form‐stable phase change materials. Thermochimica Acta 665: 43–52.
94 94 Qian, Y., Han, N., Zhang, Z. et al. (2019). Enhanced thermal‐to‐flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Applied Materials & Interfaces 11: 45832–45843.
95 95 Wei, X., Xue, F., Qi, X. et al. (2019). Photo‐ and electro‐responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure. Applied Energy 236: 70–80.
96 96 Wu, H., Deng, S., Shao, Y. et al. (2019). Multiresponsive shape‐adaptable phase change materials with cellulose nanofiber/graphene nanoplatelet hybrid‐coated melamine foam for light/electro‐to‐thermal energy storage and utilization. ACS Applied Materials & Interfaces 11: 46851–46863.
97 97 Zhang, X., Liu, H., Huang, Z. et al. (2016). Preparation and characterization of the properties of polyethylene glycol @ Si3 N4 nanowires as phase‐change materials. Chemical Engineering Journal 301: 229–237.
98 98 Wang, W., Yang, X., Fang, Y. et al. (2009). Enhanced thermal conductivity and thermal performance of form‐stable composite phase change materials by using β‐Aluminum nitride. Applied Energy 86: 1196–1200.
99 99 Tang, B., Wu, C., Qiu, M. et al. (2014). PEG/SiO2–Al2O3 hybrid form‐stable phase change materials with enhanced thermal conductivity. Materials Chemistry and Physics 144: 162–167.
100 100 Deng, Y., Li, J., and Nian, H. (2018). Polyethylene glycol‐enwrapped silicon carbide nanowires network/expanded vermiculite composite phase change materials: form‐stabilization, thermal energy storage behavior and thermal conductivity enhancement. Solar Energy Materials and Solar Cells 174: 283–291.
101 101 Luo, F., Yan, P., Qian, Q. et al. (2020). Highly thermally conductive phase change composites for thermal energy storage featuring shape memory. Composites Part A: Applied