Pathology of Genetically Engineered and Other Mutant Mice. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов страница 32

Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов

Скачать книгу

to targeted models for pseudoxanthoma elasticum. J. Invest. Dermatol. 133 (3): 833–836.

      42 42 Li, Q., Guo, H., Chou, D.W. et al. (2014). Mouse models for pseudoxanthoma elasticum: genetic and dietary modulation of the ectopic mineralization phenotypes. PLoS One 9 (2): e89268.

      43 43 Li, Q., Philip, V.M., Stearns, T.M. et al. (2019). Quantitative trait locus and integrative genomics revealed candidate modifier genes for ectopic mineralization in mouse models of pseudoxanthoma elasticum. J. Invest. Dermatol. 139 (12): 2447–2457.e7.

      44 44 Dolney, D.E., Szalai, G., and Felder, M.R. (2001). Differences in charge and kinetic properties of alcohol dehydrogenase 4 from C57BL/6 mice compared to other inbred strains are associated with a cysteine120 to arginine120 substitution. Biochem. Genet. 39 (7–8): 239–250.

      45 45 Sundberg, J.P., Taylor, D., Lorch, G. et al. (2011). Primary follicular dystrophy with scarring dermatitis in C57BL/6 mouse substrains resembles central centrifugal cicatricial alopecia in humans. Vet. Pathol. 48 (2): 513–524.

      46 46 Brommage, R., Powell, D.R., and Vogel, P. (2019). Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis. Mod. Mech. 12 (5): dmm038224.

      47 47 Meehan, T.F., Conte, N., West, D.B. et al. (2017). Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat. Genet. 49 (8): 1231–1238.

      48 48 Low, B.E., Krebs, M.P., Joung, J.K. et al. (2014). Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN‐mediated homology‐directed repair. Invest. Ophthalmol. Vis. Sci. 55 (1): 387–395.

      49 49 Elmore, S.A., Cardiff, R., Cesta, M.F. et al. (2018). A review of current standards and the evolution of histopathology nomenclature for laboratory animals. ILAR J. 59 (1): 29–39.

      50 50 Dickinson, M.E., Flenniken, A.M., Ji, X. et al. (2016). High‐throughput discovery of novel developmental phenotypes. Nature 537 (7621): 508–514.

      51 51 Moore, B.A., Leonard, B.C., Sebbag, L. et al. (2018). Identification of genes required for eye development by high‐throughput screening of mouse knockouts. Commun. Biol. 1: 236.

      52 52 Rozman, J., Rathkolb, B., Oestereicher, M.A. et al. (2018). Identification of genetic elements in metabolism by high‐throughput mouse phenotyping. Nat. Commun. 9 (1): 288.

      53 53 Sundberg, J.P., Dadras, S.S., Silva, K.A. et al. (2017). Systematic screening for skin, hair, and nail abnormalities in a large‐scale knockout mouse program. PLoS One 12 (7): e0180682.

      54 54 Wang, T., Bu, C.H., Hildebrand, S. et al. (2018). Probability of phenotypically detectable protein damage by ENU‐induced mutations in the Mutagenetix database. Nat. Commun. 9 (1): 441.

      55 55 Wang, T., Zhan, X., Bu, C.H. et al. (2015). Real‐time resolution of point mutations that cause phenovariance in mice. Proc. Natl. Acad. Sci. U.S.A. 112 (5): E440–E449.

      56 56 Bogue, M.A., Philip, V.M., Walton, D.O. et al. (2020). Mouse Phenome Database: a data repository and analysis suite for curated primary mouse phenotype data. Nucleic Acids Res. 48 (D1): D716–D723.

      57 57 Schofield, P.N., Bard, J.B., Boniver, J. et al. (2004). Pathbase: a new reference resource and database for laboratory mouse pathology. Radiat. Prot. Dosim. 112 (4): 525–528.

      58 58 Schofield, P.N., Gruenberger, M., and Sundberg, J.P. (2010). Pathbase and the MPATH ontology. Community resources for mouse histopathology. Vet. Pathol. 47 (6): 1016–1020.

      59 59 Hayamizu, T.F., Mangan, M., Corradi, J.P. et al. (2005). The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data. Genome Biol. 6 (3): R29.

      60 60 Schofield, P.N., Sundberg, J.P., Sundberg, B.A. et al. (2013). The mouse pathology ontology, MPATH; structure and applications. J. Biomed. Semantics 4 (1): 18.

      61 61 Fisher, H.M., Hoehndorf, R., Bazelato, B.S. et al. (2016). DermO; an ontology for the description of dermatologic disease. J. Biomed. Semantics 7: 38.

      62 62 Sundberg, B.A., Schofield, P.N., Gruenberger, M., and Sundberg, J.P. (2009). A data‐capture tool for mouse pathology phenotyping. Vet. Pathol. 46 (6): 1230–1240.

      63 63 Sundberg, J.P., Sundberg, B.A., and Schofield, P. (2008). Integrating mouse anatomy and pathology ontologies into a phenotyping database: tools for data capture and training. Mamm. Genome 19 (6): 413–419.

      64 64 Keenan, C.M., Baker, J.F., Bradley, A.E. et al. (2015). International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) progress to date and future plans. Toxicol. Pathol. 28 (1): 51–53.

      65 65 Keenan, C.M., Baker, J., Bradley, A. et al. (2015). International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): progress to date and future plans. Toxicol. Pathol. 43 (5): 730–732.

      66 66 Maronpot, R.R., Boorman, G.A., and Gaul, B.W. (1999). Pathology of the Mouse. Vienna, IL: Cache River Press.

      67 67 Suttie, A.W., Leininger, J.R., and Bradley, A.E. (2017). Boorman's Pathology of the Rat, 2e. San Diego: Academic Press.

      68 68 Rowe, D.W., Adams, D.J., Hong, S.H. et al. (2018). Screening gene knockout mice for variation in bone mass: analysis by μCT and histomorphometry. Curr. Osteoporos Rep. 16 (2): 77–94.

      69 69 DiTommaso, T., Jones, L.K., Cottle, D.L. et al. (2014). Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse. PLoS Genet. 10 (10): e1004705.

      70 70 Harding, S.D., Armit, C., Armstrong, J. et al. (2011). The GUDMAP database – an online resource for genitourinary research. Development 138 (13): 2845–2853.

      71 71 Lein, E.S., Hawrylycz, M.J., Ao, N. et al. (2007). Genome‐wide atlas of gene expression in the adult mouse brain. Nature 445 (7124): 168–176.

      72 72 Krishnan, A., Samtani, R., Dhanantwari, P. et al. (2014). A detailed comparison of mouse and human cardiac development. Pediatr. Res. 76 (6): 500–507.

      73 73 Talman, V., Teppo, J., Poho, P. et al. (2018). Molecular atlas of postnatal mouse heart development. J. Am. Heart Assoc. 7 (20): e010378.

      74 74 Amberger, J.S., Bocchini, C.A., Schiettecatte, F. et al. (2015). OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43 (Database issue): D789–D798.

      75 75 McKusick, V.A. (2007). Mendelian Inheritance in Man and its online version, OMIM. Am. J. Hum. Genet. 80 (4): 588–604.

      76 76 Armit, C., Richardson, L., Venkataraman, S. et al. (2017). eMouseAtlas: an atlas‐based resource for understanding mammalian embryogenesis. Dev. Biol. 423 (1): 1–11.

      77 77 Armit, C., Richardson, L., Hill, B. et al. (2015). eMouseAtlas informatics: embryo atlas and gene expression database. Mamm. Genome 26 (9–10): 431–440.

      78 78 Richardson, L., Graham, L., Moss, J. et al. (2015). Developing the eHistology Atlas. Database 2015: bav105.

      79 79 Graham, E., Moss, J., Burton, N. et al. (2015). The atlas of mouse development eHistology resource. Development 142 (14): 2545.

      80 80 Stevenson, P., Richardson, L., Venkataraman, S. et al. (2011). The BioMart interface to the eMouseAtlas gene expression database EMAGE. Database 2011: bar029.

      81 81 Armit,

Скачать книгу