Pathology of Genetically Engineered and Other Mutant Mice. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов страница 49

Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов

Скачать книгу

database. Nat. Commun. 9 (1): 441.

      57 57 Fairfield, H., Srivastava, A., Ananda, G. et al. (2015). Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendelian disorders. Genome Res. 25 (7): 948–957.

      58 58 Palmer, K., Fairfield, H., Borgeia, S. et al. (2016). Discovery and characterization of spontaneous mouse models of craniofacial dysmorphology. Dev. Biol. 415 (2): 216–227.

      59 59 Andrews, T.D., Whittle, B., Field, M.A. et al. (2012). Massively parallel sequencing of the mouse exome to accurately identify rare, induced mutations: an immediate source for thousands of new mouse models. Open Biol. 2 (5): 120061. https://doi.org/10.1098/rsob.120061.

      60 60 Gondo, Y. (2008). Trends in large‐scale mouse mutagenesis: from genetics to functional genomics. Nat. Rev. Genet. 9 (10): 803–810.

      61 61 Chang, H., Pan, Y., Landrette, S. et al. (2019). Efficient genome‐wide first‐generation phenotypic screening system in mice using the piggyBac transposon. Proc. Natl. Acad. Sci. U.S.A. 116 (37): 18507–18516.

      62 62 Birling, M.C., Herault, Y., and Pavlovic, G. (2017). Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm. Genome 28 (7‐8): 291–301.

      63 63 Brehm, M.A., Wiles, M.V., Greiner, D.L., and Shultz, L.D. (2014). Generation of improved humanized mouse models for human infectious diseases. J. Immunol. Methods 410: 3–17.

      64 64 Hosur, V., Low, B.E., Avery, C. et al. (2017). Development of humanized mice in the age of genome editing. J. Cell. Biochem. 118 (10): 3043–3048.

      65 65 Low, B.E., Krebs, M.P., Joung, J.K. et al. (2014). Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN‐mediated homology‐directed repair. Invest. Ophthalmol. Vis. Sci. 55 (1): 387–395.

      66 66 Brommage, R., Powell, D.R., and Vogel, P. (2019). Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis. Models Mech. 12 (5).

      67 67 Bradley, A., Anastassiadis, K., Ayadi, A. et al. (2012). The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm. Genome 23 (9‐10): 580–586.

      68 68 Meehan, T.F., Conte, N., West, D.B. et al. (2017). Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat. Genet. 49 (8): 1231–1238.

      69 69 Kaloff, C., Anastassiadis, K., Ayadi, A. et al. (2016). Genome wide conditional mouse knockout resources. Drug Discovery Today 20: 3–12.

      70 70 Dickinson, M.E., Flenniken, A.M., Ji, X. et al. (2016). High‐throughput discovery of novel developmental phenotypes. Nature 537 (7621): 508–514.

      71 71 Moore, B.A., Leonard, B.C., Sebbag, L. et al. (2018). Identification of genes required for eye development by high‐throughput screening of mouse knockouts. Commun. Biol. 1: 236.

      72 72 Rozman, J., Rathkolb, B., Oestereicher, M.A. et al. (2018). Identification of genetic elements in metabolism by high‐throughput mouse phenotyping. Nat. Commun. 9 (1): 288.

      73 73 Sundberg, J.P., Dadras, S.S., Silva, K.A. et al. (2017). Systematic screening for skin, hair, and nail abnormalities in a large‐scale knockout mouse program. PLoS One 12 (7): e0180682.

      74 74 Smedley, D., Oellrich, A., Köhler, S. et al. (2013). PhenoDigm: analyzing curated annotations to associate animal models with human diseases. Database 2013: bat025. https://doi.org/10.1093/database/bat025.

      75 75 Hoehndorf, R., Schofield, P.N., and Gkoutos, G.V. (2013). An integrative, translational approach to understanding rare and orphan genetically based diseases. Interface Focus 3 (2): 20120055.

      76 76 Hoehndorf, R., Schofield, P.N., and Gkoutos, G.V. (2011). PhenomeNET: a whole‐phenome approach to disease gene discovery. Nucleic Acids Res. 39 (18): e119.

      77 77 Klement, J.F., Matsuzaki, Y., Jiang, Q.J. et al. (2005). Targeted ablation of the Abcc6 gene results in ectopic mineralization of connective tissues. Mol. Cell. Biol. 25 (18): 8299–8310.

      78 78 Gorgels, T.G., Hu, X., Scheffer, G.L. et al. (2005). Disruption of Abcc6 in the mouse: novel insight in the pathogenesis of pseudoxanthoma elasticum. Hum. Mol. Genet. 14 (13): 1763–1773.

      79 79 Berndt, A., Li, Q., Potter, C.S. et al. (2013). A single‐nucleotide polymorphism in the Abcc6 gene associates with connective tissue mineralization in mice similar to targeted models for pseudoxanthoma elasticum. J. Invest. Dermatol. 133 (3): 833–836.

      80 80 Hawkes, J.E., Adalsteinsson, J.A., Gudjonsson, J.E., and Ward, N.L. (2018). Research techniques made simple: murine models of human psoriasis. J. Invest. Dermatol. 138 (1): e1–e8.

      81 81 Jordan, C.T., Cao, L., Roberson, E.D. et al. (2012). Rare and common variants in CARD14, encoding an epidermal regulator of NF‐kappaB, in psoriasis. Am. J. Hum. Genet. 90 (5): 796–808.

      82 82 Jordan, C.T., Cao, L., Roberson, E.D. et al. (2012). PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90 (5): 784–795.

      83 83 Mellett, M., Meier, B., Mohanan, D. et al. (2018). CARD14 gain‐of‐function mutation alone is sufficient to drive IL‐23/IL‐17‐mediated psoriasiform skin inflammation in vivo. J. Invest. Dermatol. 138 (9): 2010–2023.

      84 84 Wang, M., Zhang, S., Zheng, G. et al. (2018). Gain‐of‐function mutation of Card14 leads to spontaneous psoriasis‐like skin inflammation through enhanced keratinocyte response to IL‐17A. Immunity 49 (1): 66–79. e5.

      85 85 Sundberg, J.P., Pratt, C.H., Silva, K.A. et al. (2019). Gain of function p.E138A alteration in Card14 leads to psoriasiform skin inflammation and implicates genetic modifiers in disease severity. Exp. Mol. Pathol. 110: 104286.

      86 86 Threadgill, D.W. and Churchill, G.A. (2012). Ten years of the collaborative cross. G3 2 (2): 153–156.

      87 87 Svenson, K.L., Gatti, D.M., Valdar, W. et al. (2012). High‐resolution genetic mapping using the Mouse Diversity outbred population. Genetics 190 (2): 437–447.

      88 88 Schofield, P.N., Hoehndorf, R., and Gkoutos, G.V. (2012). Mouse genetic and phenotypic resources for human genetics. Hum. Mutat. 33 (5): 826–836.

      89 89 Lehner, B. (2013). Genotype to phenotype: lessons from model organisms for human genetics. Nat. Rev. Genet. 14 (3): 168–178.

      90 90 Cox, R.D. and Church, C.D. (2011). Mouse models and the interpretation of human GWAS in type 2 diabetes and obesity. Dis. Models Mech. 4 (2): 155–164.

      91 91 Shultz, L.D., Keck, J., Burzenski, L. et al. (2019). Humanized mouse models of immunological diseases and precision medicine. Mamm. Genome 30 (5‐6): 123–142.

      92 92 Bernards, R., Jaffee, E., Joyce, J.A. et al. (2020). A roadmap for the next decade in cancer research. Nat. Cancer. 1: 12–17.

       Brad Bolon and Jerrold M. Ward

      Comparative pathologists who evaluate adult mice can phenotype developing mice

Скачать книгу