Pathology of Genetically Engineered and Other Mutant Mice. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов страница 66

Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов

Скачать книгу

L., Campagna, D.R., Pinkus, J.L. et al. (2008). Primary ciliary dyskinesia in mice lacking the novel ciliary protein Pcdp1. Mol. Cell. Biol. 28 (3): 949–957.

      31 Goto, J., Tezuka, T., Nakazawa, T. et al. (2008). Loss of Fyn tyrosine kinase on the C57BL/6 genetic background causes hydrocephalus with defects in oligodendrocyte development. Mol. Cell. Neurosci. 38 (2): 203–212.

      32 Itoh, K., Cheng, L., Kamei, Y. et al. (2004). Brain development in mice lacking L1–L1 homophilic adhesion. J. Cell Biol. 165 (1): 145–154.

      33 Rolf, B., Kutsche, M., and Bartsch, U. (2001). Severe hydrocephalus in L1‐deficient mice. Brain Res. 891 (1–2): 247–252.

      34 Nonaka, S., Tanaka, Y., Okada, Y. et al. (1998). Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95 (6): 829–837.

      35 Capdevila, J., Vogan, K.J., Tabin, C.J., and Izpisua Belmonte, J.C. (2000). Mechanisms of left–right determination in vertebrates. Cell 101 (1): 9–21.

      36 Levin, M. (2005). Left–right asymmetry in embryonic development: a comprehensive review. Mech. Dev. 122 (1): 3–25.

      37 Mercola, M. and Levin, M. (2001). Left–right asymmetry determination in vertebrates. Annu. Rev. Cell Dev. Biol. 17: 779–805.

      38 Ramsdell, A.F. (2005). Left–right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left–right axis determination. Dev. Biol. 288 (1): 1–20.

      39 Escalier, D. (2006). Knockout mouse models of sperm flagellum anomalies. Hum. Reprod. Update 12 (4): 449–461.

      40 Sironen, A., Shoemark, A., Patel, M. et al. (2020). Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell. Mol. Life Sci. 77 (11): 2029–2048.

      41 Inaba, K. and Mizuno, K. (2016). Sperm dysfunction and ciliopathy. Reprod. Med. Biol. 15 (2): 77–94.

      42 Afzelius, B.A., Camner, P., and Mossberg, B. (1978). On the function of cilia in the female reproductive tract. Fertil. Steril. 29 (1): 72–74.

      43  Girardet, L., Augiere, C., Asselin, M.P., and Belleannee, C. (2019). Primary cilia: biosensors of the male reproductive tract. Andrology 7 (5): 588–602.

      44 Berbari, N.F., O'Connor, A.K., Haycraft, C.J., and Yoder, B.K. (2009). The primary cilium as a complex signaling center. Curr. Biol. 19 (13): R526–R535.

      45 Anvarian, Z., Mykytyn, K., Mukhopadhyay, S. et al. (2019). Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15 (4): 199–219.

      46 Pan, A., Chang, L., Nguyen, A., and James, A.W. (2013). A review of hedgehog signaling in cranial bone development. Front. Physiol. 4: 61.

      47 Olbrich, H., Fliegauf, M., Hoefele, J. et al. (2003). Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto‐retinal degeneration and hepatic fibrosis. Nat. Genet. 34 (4): 455–459.

      48 Otto, E.A., Schermer, B., Obara, T. et al. (2003). Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left‐right axis determination. Nat. Genet. 34 (4): 413–420.

      49 Loftus, H. and Ong, A.C. (2012). Cystic kidney diseases: many ways to form a cyst. Pediatr. Nephrol. 28: 33–49.

      50 Raghavan, V. and Weisz, O.A. (2016). Discerning the role of mechanosensors in regulating proximal tubule function. Am. J. Physiol. Renal Physiol. 310 (1): F1–F5.

      51 Luyten, A., Su, X., Gondela, S. et al. (2010). Aberrant regulation of planar cell polarity in polycystic kidney disease. J. Am. Soc. Nephrol. 21 (9): 1521–1532.

      52 Vogel, P., Gelfman, C.M., Issa, T. et al. (2015). Nephronophthisis and retinal degeneration in tmem218−/− mice: a novel mouse model for Senior–Loken syndrome? Vet. Pathol. 52 (3): 580–595.

      53 Bujakowska, K.M., Liu, Q., and Pierce, E.A. (2017). Photoreceptor cilia and retinal ciliopathies. Cold Spring Harbor Perspect. Biol. 9 (10): 1–27.

      54 Chang, B., Khanna, H., Hawes, N. et al. (2006). In‐frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early‐onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 15 (11): 1847–1857.

      55 Westfall, J.E., Hoyt, C., Liu, Q. et al. (2010). Retinal degeneration and failure of photoreceptor outer segment formation in mice with targeted deletion of the Joubert syndrome gene, Ahi1. J. Neurosci. 30 (26): 8759–8768.

      56 Won, J., Gifford, E., Smith, R.S. et al. (2009). RPGRIP1 is essential for normal rod photoreceptor outer segment elaboration and morphogenesis. Hum. Mol. Genet. 18 (22): 4329–4339.

      57 Won, J., Marin de Evsikova, C., Smith, R.S. et al. (2011). NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. Hum. Mol. Genet. 20 (3): 482–496.

      58 Zhao, Y., Hong, D.H., Pawlyk, B. et al. (2003). The retinitis pigmentosa GTPase regulator (RPGR)‐interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 100 (7): 3965–3970.

      59 Insinna, C. and Besharse, J.C. (2008). Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev. Dyn. 237 (8): 1982–1992.

      60 Pazour, G.J., Baker, S.A., Deane, J.A. et al. (2002). The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J. Cell Biol. 157 (1): 103–113.

      61 Liu, Q., Lyubarsky, A., Skalet, J.H. et al. (2003). RP1 is required for the correct stacking of outer segment discs. Invest. Ophthalmol. Visual Sci. 44 (10): 4171–4183.

      62 Campione, M. and Franco, D. (2016). Current perspectives in cardiac laterality. J. Cardiovasc. Dev. Dis. 3 (4): 1–18.

      63 Tan, S.Y., Rosenthal, J., Zhao, X.Q. et al. (2007). Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. J. Clin. Invest. 117 (12): 3742–3752.

      64 Bisgrove, B.W., Morelli, S.H., and Yost, H.J. (2003). Genetics of human laterality disorders: insights from vertebrate model systems. Annu. Rev. Genomics Hum. Genet. 4: 1–32.

      65 Bohun, C.M., Potts, J.E., Casey, B.M., and Sandor, G.G. (2007). A population‐based study of cardiac malformations and outcomes associated with dextrocardia. Am. J. Cardiol. 100 (2): 305–309.

      66 Kennedy, M.P., Omran, H., Leigh, M.W. et al. (2007). Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115 (22): 2814–2821.

      67 Klena, N.T., Gibbs, B.C., and Lo, C.W. (2017). Cilia and ciliopathies in congenital heart disease. Cold Spring Harbor Perspect. Biol. 9 (8): 1–18.

      68 Yang, J., Andre, P., Ye, L., and Yang, Y.Z. (2015). The Hedgehog signalling pathway in bone formation. Int. J. Oral Sci. 7 (2): 73–79.

      69 Halbritter, J., Bizet, A.A., Schmidts, M. et al. (2013). Defects in the IFT‐B component IFT172 cause Jeune and Mainzer–Saldino syndromes in humans. Am. J. Hum. Genet. 93 (5): 915–925.

      70 Schmidts, M., Frank, V., Eisenberger, T. et al. (2013). Combined NGS approaches identify mutations in the intraflagellar

Скачать книгу