Pathology of Genetically Engineered and Other Mutant Mice. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов страница 73

Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов

Скачать книгу

infections, and neoplasms (Figure 7.8). Immunohistochemistry can identify distinct T and B cell areas with high‐endothelial venules, follicles with follicular dendritic cells and sometimes germinal centers. The same cytokines and chemokines that orchestrate the formation of secondary lymphoid organs play a role, but tertiary lymphoid organs are formed after birth and not at preselected sites [33]. The role of tertiary lymphoid organs in inflammation and cancer is not well established. Tertiary lymphoid organs associated with autoimmune inflammation are thought to contribute to the autoimmune response and be detrimental. However, tertiary lymphoid organs formed in the adventitial layer of the aorta in ApoE‐deficient mice (B6.129P2‐Apoetm1Unc/J) with atherosclerosis seem to have a beneficial effect as the atherosclerosis was more severe in mice in which the formation of the serosal lymphoid tissue was blocked [60]. The presence of tertiary lymphoid organs in and near tumors is thought to increase the response to immunotherapy and to be a positive prognostic indicator [61].

Photo depicts melanin vs. hemosiderin. (a) Spleen of B6.Cg-Prkdcscid/SzJ mouse with melanocytes and melanin-laden macrophages and hemosiderin. (b) Prussian blue stain distinguishes hemosiderin (blue) and melanin (dark brown) pigments. Photo depicts tertiary lymphoid structures.

      This work was supported grants from the National Institutes of Health (R01‐CA089713 and P30‐CA034196 to JPS).

      1 1 Gao, X., Xu, C., Asada, N., and Frenette, P.S. (2018). The hematopoietic stem cell niche: from embryo to adult. Development 145 (2): dev139691.

      2 2 Fitch, S.R., Kimber, G.M., Wilson, N.K. et al. (2012). Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell 11 (4): 554–566.

      3 3 Mariani, S.A., Li, Z., Rice, S. et al. (2019). Pro‐inflammatory aorta‐associated macrophages are involved in embryonic development of hematopoietic stem cells. Immunity 50 (6): 1439–1452. e5.

      4 4 Willard‐Mack, C.L., Elmore, S.A., Hall, W.C. et al. (2019). Nonproliferative and proliferative lesions of the rat and mouse hematolymphoid system. Toxicol. Pathol. 47 (6): 665–783.

      5 5 Pinho, S. and Frenette, P.S. (2019). Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20 (5): 303–320.

      6 6 Pioli, P.D., Casero, D., Montecino‐Rodriguez, E. et al. (2019). Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity 51 (2): 351–366. e6.

      7 7 Sass, B. and Montali, R.J. (1980). Spontaneous fibro‐osseous lesions in aging female mice. Lab. Anim. Sci. 30 (5): 907–909.

      8 8 Albassam, M.A., Wojcinski, Z.W., Barsoum, N.J., and Smith, G.S. (1991). Spontaneous fibro‐osseous proliferative lesions in the sternums and femurs of B6C3F1 mice. Vet. Pathol. 28 (5): 381–388.

      9 9 Berndt, A., Ackert‐Bicknell, C., Silva, K.A. et al. (2016). Genetic determinants of fibro‐osseous lesions in aged inbred mice. Exp. Mol. Pathol. 100 (1): 92–100.

      10 10 Rodewald, H.R. (2008). Thymus organogenesis. Annu. Rev. Immunol. 26: 355–388.

      11 11 de Vries, M.J. and Hijmans, W. (1967). Pathological changes of thymic epithelial cells and autoimmune disease in NZB, NZW and (NZB x NZW)F1 mice. Immunology 12 (2): 179–196.

      12 12 Li, L., Hsu, H.C., Grizzle, W.E. et al. (2003). Cellular mechanism of thymic involution. Scand. J. Immunol. 57 (5): 410–422.

      13 13 Xu, P.X., Adams, J., Peters, H. et al. (1999). Eya1‐deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat. Genet. 23 (1): 113–117.

      14 14 Xu, P.X., Zheng, W., Laclef, C. et al. (2002). Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129 (13): 3033–3044.

      15 15 Nehls, M., Kyewski, B., Messerle, M. et al. (1996). Two genetically separable steps in the differentiation of thymic epithelium. Science 272 (5263): 886–889.

      16 16 Manley, N.R. and Capecchi, M.R. (1998). Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev. Biol. 195 (1): 1–15.

      17 17 Dietrich, S. and Gruss, P. (1995). undulated phenotypes suggest a role of Pax‐1 for the development of vertebral and extravertebral structures. Dev. Biol. 167 (2): 529–548.

      18 18 Conway, S.J., Henderson, D.J., and Copp, A.J. (1997). Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 124 (2): 505–514.

      19 19 Peters, H., Neubuser, A., Kratochwil, K., and Balling, R. (1998). Pax9‐deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 12 (17): 2735–2747.

      20 20 Laclef, C., Souil, E., Demignon, J., and Maire, P. (2003). Thymus, kidney and craniofacial abnormalities in Six 1 deficient mice. Mech. Dev. 120 (6): 669–679.

      21 21 Jerome, L.A. and Papaioannou, V.E. (2001). DiGeorge syndrome phenotype in mice mutant for the T‐box gene, Tbx1. Nat. Genet. 27 (3): 286–291.

      22 22 Custer, R.P., Bosma, G.C., and Bosma, M.J. (1985). Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am. J. Pathol. 120 (3): 464–477.

      23 23 Mombaerts, P., Iacomini, J., Johnson, R.S. et al. (1992). RAG‐1‐deficient mice have no mature B and T lymphocytes. Cell 68 (5): 869–877.

      24 24 Shinkai, Y., Rathbun, G., Lam, K.P. et al. (1992). RAG‐2‐deficient mice lack mature lymphocytes owing to inability to initiate V(D). J. Rearrangement. Cell 68 (5): 855–867.

      25 25 DiSanto, J.P., Muller, W., Guy‐Grand, D. et al. (1995). Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc. Natl. Acad. Sci. U.S.A. 92 (2): 377–381.

      26 26 Cao, X., Shores, E.W., Hu‐Li, J. et al. (1995). Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2 (3): 223–238.

      27 27 Pearse, G. (2006). Histopathology of the thymus. Toxicol. Pathol. 34 (5): 515–547.

      28 28 Burnet, F.M. and Holmes, M.C. (1964). Thymic changes in the mouse strain Nzb in relation to the auto‐immune state. J. Pathol. Bacteriol. 88: 229–241.

      29 29 Van den Broeck, W., Derore, A., and Simoens, P. (2006). Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory

Скачать книгу