Ingeniería de la energía eólica. Miguel Villarubia López
Чтение книги онлайн.
Читать онлайн книгу Ingeniería de la energía eólica - Miguel Villarubia López страница 9
Metasfera: para alturas superiores a los 500 km la termosfera recibe el nombre de magnetosfera ya que el movimiento de las partículas viene condicionado por el campo magnético terrestre.
c) Exosfera: Constituye la zona más alejada de la atmósfera. El gas está muy enrarecido, con muy baja densidad. Las partículas están ionizadas. El conjunto formado por la heterosfera y la exosfera se conoce también como alta atmósfera.
Figura 2.1. Estructura vertical de la atmósfera terrestre.
El perfil vertical de temperaturas en función de la altura se muestra en la figura 2.2.
Figura 2.2. Perfil vertical de temperatura de la atmósfera estándar.
Algunas zonas de la atmósfera de especial interés son:
Ionosfera: es una región comprendida entre 60 y 600 km de altura en la que los componentes del aire están muy ionizados debido a la acción de los rayos UV de onda corta, los rayos X y la radiación cósmica. Esta región juega un papel muy importante en la transmisión de las ondas de radio.
Ozonosfera: situada en la estratosfera, entre unos 15 y 40 km de altura, esta región presenta una elevada concentración de ozono, cuya propiedad absorbente de la radiación UV evita la llegada de la mayoría de la misma a la superficie terrestre, actuando como un escudo protector frente a dicha radiación.
La tabla 2.3 muestra la clasificación de las distintas capas atmosféricas según el gradiente térmico vertical.
Capa | Altura (km) | Características del gradiente |
Troposfera | 0 – 10 | dT/dz < 0 (estratificación adiabática) |
Tropopausa | 10 – 20 | dT/dz = 0 (estratificación isoterma) |
Estratosfera | 20 – 40 | dT/dz > 0 |
Estratopausa | 40 – 50 | dT/dz = 0 |
Mesosfera | 50 – 80 | dT/dz < 0 |
Mesopausa | 80 – 90 | dT/dz = 0 |
Termosfera | 90 – 100 | dT/dz > 0 |
Tabla 2.3. Estructura atmosférica según el gradiente térmico.
2.3. La atmósfera estándar
Como referencia, se define una atmósfera estándar según se indica en la tabla 2.4.
Aire seco % (volumen) | N2 (78,04); O2 (20,99); Ar (0,94); CO2 (0,035) |
Condiciones estándar (nivel del mar, altura z = 0 m) | p = 1.013,25 mbar ; t = 15 0C ; ρ = 1,2257 kg/m3; R’ = 287,04 J/kg K |
Aceleración de la gravedad: g = 9,80665 m/s2 | |
Coeficiente de dilatación del aire = 1/273 (ºC)-1 | |
Troposfera 0 < z < 11.000 m | Temperatura t (ºC): t = 15 – 0,0065 z |
Presión p (mb): p = 1013,25×(1 – 2,2569 × 10-5 Z)5,2561 | |
Tabla 2.4. Características de la atmósfera estándar. |
Ejemplo 2.2
Calcular la temperatura y la presión del aire a una altura de 1.000 m
Solución
Utilizando las expresiones de la tabla 2.4, para una altura z = 1.000 m se tiene:
2.4. Estabilidad de la atmósfera
Un proceso en el que no hay intercambio de calor con el medio que lo rodea se conoce como proceso adiabático. En la atmósfera, la relación entre el perfil de temperaturas correspondiente a una elevación adiabática del aire y el perfil real de temperaturas define la estabilidad vertical de la atmósfera.
En energía eólica, la troposfera es la capa de mayor interés. En la misma, el perfil de temperaturas para la estratificación adiabática presenta un gradiente térmico teórico para el aire seco igual a -9,8ºC/km. En la práctica, la atmósfera real y la presencia de vapor de agua reducen este gradiente a -6,8ºC/km.
El calentamiento y enfriamiento del suelo por la radiación solar, junto con la mezcla de masas de aire de diversa procedencia, ocasiona la variación de la temperatura del aire con la altura. Esta variación condiciona los movimientos verticales del aire. La atmósfera se considera estable cuando se inhiben los movimientos verticales, en caso contrario la inestabilidad los facilita. Una atmósfera neutra es indiferente a estos movimientos. Cuando una masa de aire asciende se pueden distinguir tres casos:
Atmósfera neutra: el perfil vertical de temperatura es tal que a medida que se asciende, una atmósfera neutra presenta la misma temperatura que tendría si la elevación se realizase de forma adiabática. El perfil adiabático de temperaturas coincide con el perfil real de temperaturas de la atmósfera neutra.
Atmósfera estable: el perfil vertical de temperatura es tal que a medida que se asciende, la atmósfera estable tiene una temperatura mayor que la que tendría si la elevación fuese adiabática. El perfil real de temperaturas presenta una pendiente mayor que el adiabático del aire seco (figura 2.3), de tal forma que si una partícula de aire situada en el punto A ascendiera, su temperatura adiabática sería menor que la temperatura real del aire de su entorno por lo que la partícula tendería a descender, inhibiéndose los movimientos verticales.
Atmósfera inestable: el perfil de temperaturas es tal que a medida que se asciende, la atmósfera inestable presenta una temperatura menor que la que tendría si la elevación fuese adiabática. Si una partícula de aire situada en el punto A ascendiera adiabáticamente su temperatura adiabática sería mayor que la temperatura real del aire por lo que tendería a seguir elevándose, creando movimientos verticales que favorecerían la mezcla en la atmósfera. El perfil real de temperaturas presenta una pendiente menor que el perfil adiabático del aire seco (figura 2.3).
Figura 2.3. Perfiles