Power Magnetic Devices. Scott D. Sudhoff
Чтение книги онлайн.
Читать онлайн книгу Power Magnetic Devices - Scott D. Sudhoff страница 5
3 Chapter 3Figure 3.1 Common inductor architectures.Figure 3.2 Example of a coil.Figure 3.3 Cross‐section of coil.Figure 3.4 Bobbin wound coil.Figure 3.5 UI‐Core inductor.Figure 3.6 UI‐Core inductor Pareto‐optimal front.Figure 3.7 Final population gene distribution.Figure 3.8 Current density versus mass.Figure 3.9 Conductor count versus mass.Figure 3.10 Dimensions versus mass.Figure 3.11 Design 50.
4 Chapter 4Figure 4.1 Field energy and co‐energy.Figure 4.2 Excitation of a single branch.
5 Chapter 5Figure 5.1 Possible electromagnet arrangements.Figure 5.2 EI‐core electromagnet.Figure 5.3 EI‐core magnetic equivalent circuit.Figure 5.4 Slot leakage path.Figure 5.5 Reduced magnetic equivalent circuit.Figure 5.6 Flux linkage versus current.Figure 5.7 Force versus current.Figure 5.8 Force over power loss versus current.Figure 5.9 Electromagnetic door latch.Figure 5.10 Pareto‐optimal front between volume and loss.Figure 5.11 Gene distribution plot for the electromagnet.Figure 5.12 Current density versus volume for electromagnet.Figure 5.13 Conductor count versus volume for electromagnet.Figure 5.14 Core widths versus volume for electromagnet.Figure 5.15 Geometrical parameters versus volume for electromagnet.Figure 5.16 Geometrical parameters versus volume for electromagnet.Figure 5.17 Effects of wire size descritization on Pareto‐optimal front.Figure 5.18 Effects of wire size discretization on current density.
6 Chapter 6Figure 6.1 Calculation of eddy current losses.Figure 6.2 Top view of test configuration.Figure 6.3 Excitation‐normalized power loss versus frequency.Figure 6.4 Magnetic domains.Figure 6.5 B–H characteristics of a ferrite material MN80C.Figure 6.6 Large uniformly wound toroid.Figure 6.7 Hysteresis characteristic.Figure 6.8 Minor loop behavior.Figure 6.9 Flux density waveforms.Figure 6.10 Loss components versus frequency.Figure 6.11 Epstein frame.Figure 6.12 Single‐ and double‐sheet testers.Figure 6.13 Toroidal tester.Figure 6.14 Impact of laser cutting.Figure 6.15 Determining the anhysteretic characteristic.Figure 6.16 Characterization waveforms in example 6.5A.Figure 6.17 Sense winding flux linkage versus magnetizing current in example...Figure 6.18 B–H characteristic in example 6.5A.Figure 6.19 Example 6.5B characterization of μB(B).Figure 6.20 Example 6.8A measured and fitted losses.Figure 6.21 Hysteron behavior.Figure 6.22 Example magnetization states.Figure 6.23 Incremental magnetization.Figure 6.24 Trajectories predicted by the extended Jiles–Atherton model.Figure 6.25 Alternate path for eddy current derivation.
7 Chapter 7Figure 7.1 Transformer types.Figure 7.2 Cross section of one leg of core type transformer.Figure 7.3 Elementary transformer.Figure 7.4 Transformer magnetic equivalent circuit.Figure 7.5 T‐equivalent circuit.Figure 7.6 Circuit for Example 7.3A.Figure 7.7 Modified T‐equivalent circuit.Figure 7.8 Core‐type transformer cross section.Figure 7.9 End leg cross section with coils.Figure 7.10 Coil construction.Figure 7.11 Core type transformer magnetic equivalent circuit.Figure 7.12 Reduced magnetic equivalent circuit.Figure 7.13 Core type transformer leakage paths.Figure 7.14 Division of winding into interior and exterior portions.Figure 7.15 Consideration of a vertical leakage path.Figure 7.16 Leakage flux paths.Figure 7.17 Exterior secondary leakage flux paths.Figure 7.18 Transformer design Pareto‐optimal front.Figure 7.19 Parameter distribution.Figure 7.20 Design 100 cross sections.Figure 7.21 Primary flux linkage versus current.Figure 7.22 No‐load flux density waveforms.
8 Chapter 8Figure 8.1 Distributed winding stator.Figure 8.2 Definition of position measurements.Figure 8.3 P‐pole machines.Figure 8.4 Slot structure.Figure 8.5 Developed diagram.Figure 8.6 End conductors.Figure 8.7 Stator winding for a 4‐pole 36‐slot machine.Figure 8.8 Winding arrangements.Figure 8.9 Calculation of the winding function.Figure 8.10 Conductor distribution and winding functions.Figure 8.11 Path of integration.Figure 8.12 Calculation of flux linkage.Figure 8.13 Carter’s coefficient.Figure 8.14 Slot leakage inductance.Figure 8.15 End leakage inductance.Figure 8.16 Slot leakage permeance due to paths 1–4.Figure 8.17 Slot leakage permeance due to paths 5–7.Figure 8.18 End winding permeance—exterior path.Figure 8.19 Geometric interpretation of Park’s transformation.
9 Chapter 9Figure 9.1 Surface‐mounted permanent magnet synchronous machine.Figure 9.2 Two interior magnetic arrangements.Figure 9.3 Wye and delta connections.Figure 9.4 Three‐phase bridge inverter and machine.Figure 9.5 Voltage source fed PMAC machine characteristics.Figure 9.6 Current source fed PMAC machine characteristics.Figure 9.7 Surface‐mounted permanent magnet synchronous machine.Figure 9.8 Slot and tooth dimensions.Figure 9.9 Rectangular slot approximation.Figure 9.10 Thin sector of machine.Figure 9.11 Radial magnetization.Figure 9.12 Backiron flux calculation.Figure 9.13 Backiron flux.Figure 9.14 Flux density in rotor backiron.Figure 9.15 Pareto‐optimal front.Figure 9.16 Parameter distribution.Figure 9.17 Material selection versus electromagnetic mass.Figure 9.18 Power loss components versus electromagnetic mass.Figure 9.19 Component mass versus electromagnetic mass.Figure 9.20 Current‐related parameters versus electromagnetic mass.Figure 9.21 Machine parameters versus electromagnetic mass.Figure 9.22 Design 38 cross section.Figure 9.23 Design 38 flux density versus rotor position.
10 Chapter 10Figure 10.1 An elemental cuboid.Figure 10.2 One‐dimensional heat flow example.Figure 10.3 Thermal equivalent circuit for one‐dimensional heat flow.Figure 10.4 Mean temperature versus time.Figure 10.5 Heat transfer rate versus time.Figure 10.6 Temperature profile versus time.Figure 10.7 Special case for one‐dimensional heat flow.Figure 10.8 Thermal equivalent circuit of a cuboidal region. (Based on [1].)...Figure 10.9 Cylindrical region.Figure 10.10 Thermal equivalent circuit of cylindrical region.Figure 10.11 Representation of homogenized region. (Based on [2].)Figure 10.12 Spatial temperature dependence.Figure 10.13 Standard branch.Figure 10.14 Concise circuit symbols.Figure 10.15 Thermal equivalent circuit elements.Figure 10.16 Cuboids of EI core electromagnet arrangement.Figure