Nature-Inspired Algorithms and Applications. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Nature-Inspired Algorithms and Applications - Группа авторов страница 18
The working of EHO is based on that every elephant in clan is updated by utilizing group data through clan by the procedure of updating, and afterward, the poorest elephant is supplanted by randomly produced elephant individual through the procedure of updating. EHO can discover much improved solutions on more problems of benchmark. Problems of benchmark are a lot of different types of problem of optimization that comprises of different kinds of aptitudes that utilized in testing and the estimation is verified and described. Then, the execution of estimation enhances the algorithm under various ecological conditions.
Table 1.1 lists the various applications of NIC algorithms.
References
1. Siddique, N. and Adeli, H., Nature-Inspired Computing: An Overview and Some Future Directions. Cognit. Comput., 7, 706–714, 2015.
2. Wang, L., Kang, Q., Wu, Q.-d., Nature-inspired Computation — Effective Realization of Artificial Intelligence. Syst. Eng. - Theory Pract., 27, 126–134, 2007, 10.1016/S1874-8651(08)60034-4.
3. Fan, X., Sayers, W., Zhang, S. et al., Review and Classification of Bio-inspired Algorithms and Their Applications. J. Bionic Eng., 17, 611–631, 2020, https://doi.org/10.1007/s42235-020-0049-9.
4. Nguyen, B.H., Xue, B., Zhang, M., A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol. Comput., 54, 100663, 2020.
5. Neri, F. and Cotta, C., Memetic algorithms and memetic computing optimization: A literature review. Swarm Evol. Comput., 2, 1–14, 2012, 10.1016/j. swevo.2011.11.003.
6. Albuquerque, I.M.R., Nguyen, B.H., Xue, B., Zhang, M., A Novel Genetic Algorithm Approach to Simultaneous Feature Selection and Instance Selection. 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia, pp. 616–623, 2020.
7. Ding, X. et al., An Improved Ant Colony Algorithm for Optimized Band Selection of Hyperspectral Remotely Sensed Imagery. IEEE Access, 8, 25789– 25799, 2020.
8. Xie, X.-F., Zhang, W.-J., Yang, Z.-L., Social cognitive optimization for nonlinear programming problems. Proceedings. International Conference on Machine Learning and Cybernetics, Beijing, China, vol. 2, pp. 779–783, 2002.
9. Pham, D.T., Afshin, G., Ebubekir, K., Sameh, O., Sahra, R., Zaidi, M., The Bees Algorithm - A Novel Tool for Complex Optimisation Problems. Proceedings of IPROMS 2006 Conference, 10.1016/B978-008045157-2/50081-X.
10. He, S., Wu, Q.H., Saunders, J.R., Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior. IEEE Trans. Evol. Comput., 13, 5, 973–990, Oct. 2009.
11. Rabanal, P., Rodríguez, I., Rubio, F., Solving Dynamic TSP by Using River Formation Dynamics. 2008 Fourth International Conference on Natural Computation, Jinan, pp. 246–250, 2008.
12. Li, J., Guo, L., Li, Y., Liu, C., Enhancing Elephant Herding Optimization with Novel Individual Updating Strategies for Large-Scale Optimization Problems. Mathematics, 7, 395, 2019, 10.3390/math7050395.
13. Almufti, S.M., Asaad, R.R., Salim, B.W., Review on Elephant Herding Optimization Algorithm Performance in Solving Optimization Problems. Int. J. Eng. Technol., 7, 6109–6114, 2018, 10.14419/ijet.v7i4. 23127.
14. Ma, L., Wang, R., Chen, Y., The Social Cognitive Optimization Algorithm: Modifiability and Application. 2010 International Conference on E-Product E-Service and E-Entertainment, Henan, pp. 1–4, 2010.
15. Redlarski, G., Pałkowski, A., Dąbkowski, M., Using River Formation Dynamics Algorithm in Mobile Robot Navigation. Solid State Phenom., 198, 138–143, 2013, 10.4028/www.scientific.net/SSP.198.138.
16. Kang, Q., Lan, T., Yan, Y., Wang, L., Wu, Q., Group search optimizer based optimal location and capacity of distributed generations. Neurocomputing, 78, 55–63, 2012, 10.1016/j.neucom.2011.05.030.
17. Liu, F., Xu, X.-T., Li, L.-J., Wu, Q.H., The Group Search Optimizer and its Application on Truss Structure Design. 2008 Fourth International Conference on Natural Computation, Jinan, pp. 688–692, 2008.
18. Joong, K., Harmony Search Algorithm: A Unique Music-inspired Algorithm. Proc. Eng., 154, 1401–1405, 2016, 10.1016/j.proeng.2016.07.510.
19. Yang, X.-S., Harmony Search as a Metaheuristic Algorithm. Stud. Comput. Intell., 191, pp.1–14, 2010, 10.1007/978-3-642-00185-7_1.
20. Gao, X.Z., Govindasamy, V., Xu, H., Xianjia, W., Kai, Z., Harmony Search Method: Theory and Applications. Comput. Intell. Neurosci., 1–10, Vol 2015, 10.1155/2015/258491.
21. Husseinzadeh Kashan, A., A new metaheuristic for optimization: Optics inspired optimization (OIO). Comput. Oper. Res., 55, pp.99–125 2014, 10.1016/j.cor.2014.10.011.
22. Redlarski, G., Dabkowski, M., Pałkowski, A., Generating optimal paths in dynamic environments using River Formation Dynamics algorithm.
23. Doğan, B., A Modified Vortex Search Algorithm for Numerical Function Optimization. Int. J. Artif. Intell. Appl., 7, 37–54, 2016, 10.5121/ijaia.2016.7304.
24. Sajedi, H. and Razavi, S.F., MVSA: Multiple vortex search algorithm. 2016 IEEE 17th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, pp. 000169–000174, 2016. J. Comput. Sci., 20, 8–16, 2017, 10.1016/j.jocs.2017.03.002.
1 *Corresponding author: [email protected]