Dental Neuroimaging. Chia-shu Lin

Чтение книги онлайн.

Читать онлайн книгу Dental Neuroimaging - Chia-shu Lin страница 22

Dental Neuroimaging - Chia-shu Lin

Скачать книгу

       The OBB framework highlights the role of the exchange of sensorimotor information between the brain and the stomatognathic system in oral functions.

       In the BSA framework, the brain is not just a passive translator for the sensorimotor information but also a ‘moderator’ that actively engaged with one's feeding behaviour.

       Neuroimaging research on the BSA framework focuses on identifying individual differences in oral functions. The BSA emphasizes that the brain plays a more comprehensive role in sensorimotor and affective–cognitive processing on the stomatognathic functions and feeding behaviour.

      Further Readings

      1 Please see the Companion Website for Suggested Readings.

      1 Abrahamsen, R., Dietz, M., Lodahl, S. et al. (2010). Effect of hypnotic pain modulation on brain activity in patients with temporomandibular disorder pain. Pain 151: 825–833.

      2 Anderson, T. (1790). Pathological observations on the brain. Lond. Med. J. 11: 182–190.

      3 Avivi‐Arber, L., Lee, J., Sood, C. et al. (2015). Long‐term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats. J. Comp. Neurol. 523: 2372–2389.

      4 Avivi‐Arber and Sessle (2018). Jaw sensorimotor control in healthy adults and effects of ageing. J. Oral Rehabil. 45: 50–80.

      5 Bandettini, P.A. (2012). Twenty years of functional MRI: the science and the stories. NeuroImage 62: 575–588.

      6 Brügger, M., Lutz, K., Brönnimann, B. et al. (2012). Tracing toothache intensity in the brain. J. Dent. Res. 91: 156–160.

      7 Carabotti, M., Scirocco, A., Maselli, M.A., and Severi, C. (2015). The gut‐brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28: 203–209.

      8 Desouza, D.D., Moayedi, M., Chen, D.Q. et al. (2013). Sensorimotor and pain modulation brain abnormalities in trigeminal neuralgia: a paroxysmal, sensory‐triggered neuropathic pain. PLoS One 8: e66340.

      9 Gazzaniga, M.S., Ivry, R.B., and Mangun, G.R. (2019). Cognitive Neuroscience: The Biology of the Mind. W. W. Norton & Company.

      10 Gould, D.J., Clarkson, M.J., Hutchins, B., and Lambert, H.W. (2014). How neuroscience is taught to north American dental students: results of the basic science survey series. J. Dent. Educ. 78: 437–444.

      11 Gustin, S.M., Peck, C.C., Wilcox, S.L. et al. (2011). Different pain, different brain: thalamic anatomy in neuropathic and non‐neuropathic chronic pain syndromes. J. Neurosci. 31: 5956–5964.

      12 Gustin, S.M., Peck, C.C., Cheney, L.B. et al. (2012). Pain and plasticity: is chronic pain always associated with somatosensory cortex activity and reorganization? J. Neurosci. 32: 14874–14884.

      13 Habre‐Hallage, P., Dricot, L., Jacobs, R. et al. (2012). Brain plasticity and cortical correlates of osseoperception revealed by punctate mechanical stimulation of osseointegrated oral implants during fMRI. Eur. J. Oral Implantol. 5: 175–190.

      14 Hayes, G.B. (1889). Reflex neurosis in relation to dental pathology. Am. J. Dent. Sci. 23: 289–298.

      15 Horinuki, E., Shinoda, M., Shimizu, N. et al. (2015). Orthodontic force facilitates cortical responses to periodontal stimulation. J. Dent. Res. 94: 1158–1166.

      16 Inamochi, Y., Fueki, K., Usui, N. et al. (2017). Adaptive change in chewing‐related brain activity while wearing a palatal plate: an functional magnetic resonance imaging study. J. Oral Rehabil. 44: 770–778.

      17 Iwata, K. and Sessle, B.J. (2019). The evolution of neuroscience as a research field relevant to dentistry. J. Dent. Res. 98: 1407–1417.

      18 Jenkinson, M. and Chappell, M. (2018). Introduction to Neuoimaging Analysis. Oxford University Press.Jones, D.K., Knösche, T.R., Turner, R. (2013). White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73: 239–254.

      19 Kamer, A.R., Pirraglia, E., Tsui, W. et al. (2015). Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol. Aging 36: 627–633.

      20 Kamiya, K., Narita, N., and Iwaki, S. (2016). Improved prefrontal activity and chewing performance as function of wearing denture in partially edentulous elderly individuals: functional near‐infrared spectroscopy study. PLoS One 11: e0158070.

      21 Kaneko, M., Horinuki, E., Shimizu, N., and Kobayashi, M. (2017). Physiological profiles of cortical responses to mechanical stimulation of the tooth in the rat: an optical imaging study. Neuroscience 358: 170–180.

      22 Kimoto, K., Ono, Y., Tachibana, A. et al. (2011). Chewing‐induced regional brain activity in edentulous patients who received mandibular implant‐supported overdentures: a preliminary report. J. Prosthodont. Res. 55: 89–97.

      23 Kishimoto, T., Goto, T., and Ichikawa, T. (2019). Prefrontal cortex activity induced by periodontal afferent inputs downregulates occlusal force. Exp. Brain Res. 237: 2767–2774.

      24 Lin, C.S. (2018). Revisiting the link between cognitive decline and masticatory dysfunction. BMC Geriatr. 18: 5.

      25 Lowell, S.Y., Reynolds, R.C., Chen, G. et al. (2012). Functional connectivity and laterality of the motor and sensory components in the volitional swallowing network. Exp. Brain Res. 219: 85–96.

      26 Lund, J.P. (1991). Mastication and its control by the brain stem. Crit. Rev. Oral Biol. Med. 2: 33–64.

      27 Luraschi, J., Korgaonkar, M.S., Whittle, T. et al. (2013). Neuroplasticity in the adaptation to prosthodontic treatment. J. Orofac. Pain 27: 206–216.

      28 Lynch, C.D., O'Sullivan, V.R., and McGillycuddy, C.T. (2006). Pierre Fauchard: the 'father of modern dentistry'. Br. Dent. J. 201: 779–781.

      29 MESH (1969). Feeding Behavior [Online]. Available: www.ncbi.nlm.nih.gov/mesh/68005247 [Accessed 2021].

      30 MESH (1986). Stomatognathic System [Online]. Available: https://www.ncbi.nlm.nih.gov/mesh/68013284 [Accessed 2021].

      31 MESH (2012). Neuroimaging [Online]. Available: https://www.ncbi.nlm.nih.gov/mesh/68059906 [Accessed 2021].

      32 Moayedi, M., Weissman‐Fogel, I., Salomons, T.V. et al. (2012). White matter brain and trigeminal nerve abnormalities in temporomandibular disorder. Pain 153: 1467–1477.

      33 Nakamura, Y., Goto, T.K., Tokumori, K. et al. (2011). Localization of brain activation by umami taste in humans. Brain Res. 1406: 18–29.

      34 Ono, Y., Kobayashi, G., Hayama, R. et al. (2015). Prefrontal hemodynamic changes associated with subjective sense of occlusal discomfort. Biomed. Res. Int. 2015: 395705.

      35 Onozuka, M., Fujita, M., Watanabe, K. et al. (2002). Mapping brain region activity during chewing:

Скачать книгу